
On-Orbit Smart Camera System to Observe Illuminated and Unilluminated Space Objects 
 

Steven Morad 
Space and Terrestrial Robotic Exploration Laboratory, University of Arizona 

Ravi Teja Nallapu 
Space and Terrestrial Robotic Exploration Laboratory, University of Arizona 

Himangshu Kalita 
Space and Terrestrial Robotic Exploration Laboratory, University of Arizona 

Byong Kwon 
Space and Terrestrial Robotic Exploration Laboratory, Arizona State University 

Vishnu Reddy 
Lunar and Planetary Laboratory, University of Arizona 

Roberto Furfaro 
Systems and Industrial Engineering, University of Arizona 

Erik Asphaug 
Lunar and Planetary Laboratory, University of Arizona 

Jekan Thangavelautham 
Space and Terrestrial Robotic Exploration Laboratory, University of Arizona 

 
 

ABSTRACT 
 

The wide availability of Commercial Off-The-Shelf (COTS) electronics that can withstand Low Earth Orbit 
conditions has opened avenue for wide deployment of CubeSats and small-satellites.  CubeSats thanks to their low 
developmental and launch costs offer new opportunities for rapidly demonstrating on-orbit surveillance capabilities.  
In our earlier work, we proposed development of SWIMSat (Space based Wide-angle Imaging of Meteors) a 3U 
CubeSat demonstrator that is designed to observe illuminated objects entering the Earth’s atmosphere.  The spacecraft 
would operate autonomously using a smart camera with vision algorithms to detect, track and report of objects.  
Several CubeSats can track an object in a coordinated fashion to pinpoint an object’s trajectory.  An extension of this 
smart camera capability is to track unilluminated objects utilizing capabilities we have been developing to track and 
navigate to Near Earth Objects (NEOs).  This extension enables detecting and tracking objects that can’t readily be 
detected by humans.   

The system maintains a dense star map of the night sky and performs round the clock observations.  Standard 
optical flow algorithms are used to obtain trajectories of all moving objects in the camera field of view. Through a 
process of elimination, certain stars maybe occluded by a transiting unilluminated object which is then used to first 
detect and obtain a trajectory of the object.  Using multiple cameras observing the event from different points of view, 
it may be possible then to triangulate the position of the object in space and obtain its orbital trajectory.  In this work, 
the performance of our space object detection algorithm coupled with a spacecraft guidance, navigation, and control 
system is demonstrated.    

In our tests, we were able to successfully detect a transit 88% of the time with σ= 0.5 DN sensor readout noise. 
Our method scales linearly in time and with the number of pixels, with the most computationally intensive phases 
being parallelizable and simple enough to be offloaded to SWIMSat's onboard FPGA.  A thorough description of the 
detection algorithm, along with the tracking controller is presented in this work. Our work suggests both a critical 
need and the promise of such a tracking algorithm for implementation of an autonomous, low-cost constellation for 
performing Space Situational Awareness (SSA). 
 

1. INTRODUCTION 
 
Planet Earth experiences several kinds of space hazards on a continuous basis. One is the impact of meteoritic debris 
in the form of dust and small pebbles (estimated to be ~100,000 tons a year) [1].  Another is the impact of meter to 
kilometer sized objects that can have catastrophic impact.  The small dust and pebbles travel at speeds of up to 70 
km/s coming from various sources including passing comets, asteroids, the Moon, nearby planets and even remains 



of interstellar dust.   Much of these pebbles and dust particles ablate, vaporizing or shattering in the earth’s atmosphere.  
However, in space, these particles pose a serious hazard to satellites and human spacecraft.   The flux of this debris 
has varied greatly in time, and may be experiencing a considerable upturn in the present day [2].   Attempts to begin 
detection and tracking of these objects as they enter the atmosphere can provide meaningful data of their source, 
composition and threat magnitude. 
 

Objects ~1-50 m diameter may be impacting an order of magnitude more frequently than usual, perhaps due to recent 
breakups or other dynamical events [2]. Most recent of the larger space rocks is the ~17 m diameter LL5 chondrite 
that exploded over Chelyabinsk, Russia in Feb. 2013, from which a 0.5-ton fragment was recovered [3-4].  
 

Over the 20-year interval 1994-2013, US government sensors recorded at least 556 bolide events of various energies, 
as shown in Fig. 1 (from neo.jpl.nasa.gov). The times (day/night) and energies of events are pictured by orange or 
blue circles respectively. The largest dots, around 100,000 GJ, correspond to ~20 kT explosions. Most of the energy 
of such events goes into the fireball, the ablating trail, the sonic boom, and the vaporization of the material. The most 
immediately visible part of a fireball is the impact flash itself, which can last for seconds to tens of seconds depending 
on the size and the impact angle preceded by the ablating trail. Assuming, conservatively, that only 3% of the impact 
energy goes into the visible flash, then the visible peak brightness of a 1 m class event, with a kinetic energy of 0.1 
kT, is about equal to a thousand lightning strikes going off at once [2].  
 

The rapid miniaturization of electronics, 
sensors, actuators and exponential growth in 
computational capability of microprocessors 
all have enabled small-spacecraft such as 
CubeSats.  For the cost of several-hundreds of 
thousands of dollars, it is now possible to 
launch several space observatories that avoid 
the limits of ground observatories from 
occlusion, weather and atmospheric distortion.  
Utilizing several space observatories, it is 
possible to perform multipoint observation that 
enable measuring the kinetics of moving 
objects such as meteors.  Using these advances, 
we hope to bridge the theoretical with the 
observational and computational sciences to 
get a clearer picture and dangers of the meteor 
and Near Earth Object phenomena. In this 
paper, we propose an autonomous and efficient method of detecting and tracking meteors and NEOs that do not emit 
enough light to be visible to CubeSat-grade visible-light sensors. Importantly, using these techniques, the spacecraft 
can detect and track meteors well before they enter the ablation phase in the atmosphere.  In the following sections, 
we present background and related work, followed by a system overview of the SWIMSat mission, followed by 
presentation of the unilluminated object detection algorithm, results and discussions.  
 

2. BACKGROUND AND RELATED WORK 
 

An important source of meteors are particles released from comets during their perihelion passage, or remains of 
asteroids upon collision.  Some of these meteors are considerable in size and occur regularly in the form of annual 
meteor showers.  Meteors also trace their origin to the Moon and nearby planets, escaping these bodies from an impact 
event.  Other meteor traces their origin to Near Earth Objects (NEOs), the main asteroid belt, the Kuiper belt and to 
inter-stellar dust.  Meteor more than 1 mm are known to have enough surface to mass ratio to ablate through the earth’s 
atmosphere.  Large meteors can survive (Fig. 2) the journey to Earth’s surface and are referred to as meteorites. 
 

The meteoroid as it enters the Earth’s atmosphere losses mass due to sputtering due to high-energy collision with 
rarefied atmospheric gases [5-7].  As the meteor then enters exponentially increasing atmospheric density, it undergoes 
rapid heating and may undergo ablation [8].  Ablation occurs only if the particle reaches sufficiently high temperatures. 
Combination of the high temperatures and atmospheric forces may cause fragmentation.  Most particles in the size 
range of 0.1 – 10 cm ablate at 70 and 100 km altitude.  It is therefore of utmost importance to be able to fully track a 
meteor entering Earth before it starts to ablate.  This enables more accurate estimates of energy released. 
 

Fig. 1. Meteor impacts events totaling more than 500 from 1994 to 
2013 recorded using US government sensors. 



Conventional methods for 
meteor and Near Earth Object 
(NEO) detection involve 
identify streaks as the meteor 
is ablating.  Shin et al. uses a 
RAndom SAmple Consensus 
(RANSAC) method to obtain 
a linear trajectory for NEOs 
from visible streaks [9].  
Another more sophisticated 
approach is called transit 
photometry and has been 
widely used to discover 
exoplanets.  This same 
technique is being 
demonstrated here to detect 
Near Earth Objects and 
unilluminated meteors.  
McInroy et al. discuss visual silhouetting as a method for tracking via boundary generation [10]. The boundary 
expands by adding thick line segments to the boundary, while we fit a single line.  
 

In our approach, we make a simple assumption, expecting the entire transit to appear as a single line, but it is our 
understanding that by limiting the trajectory to a single line increases robustness to sensor noise. In contrast, McInroy 
et al. [10] method requires the shape of the object being detected and tracked known beforehand, as the initial search 
phase fits a polygon to the image.  This is not directly applicable to meteors as they appear with no forewarning. 
 

Ground observation of meteors are affected by limited field of view of the observing instruments. As a result, the 
event may not be fully observed from the ground. Complete observations of the event can provide a holistic 
understanding of the origin, the evolution and end of a meteor as it enters the earth’s atmosphere.  Being able to 
observe the fully evolution of the meteor entry can give tell-tale clues of compositional differences between cometary 
and asteroid meteors. An additional challenge to ground based observations is the atmospheric disturbances, and 
occlusions. The procedures and challenges for ground based observations are described in [11]. These challenges can 
be overcome by high-altitude or space based observations of meteors.  Notable high-altitude observations of the 
Leonid shower were conducted in 1998 [12] and 1999 [13], where the observations were made from an aircraft 
equipped with cameras, LIDARS, and spectrographs. The success of this mission provided scope for successor 
missions [14-15]. However, aircraft missions are specifically timed to a meteor event, and hence cannot be the solution 
for long-term, large-scale meteor monitoring. 
 

There lacks a dedicated satellite network to observe and characterize meteor impacts in the upper atmosphere.  This 
would require selection of camera with right wavelength to pick up hot meteor trails and other distinct characteristics 
of meteor impacts, and be optimized to detect and track fireball clouds that persist for hours after the explosion. 
Current data is gathered from other satellites that happen to catch a glimpse of a meteor event.  Long, dedicated 
observation time will help to quantify the true effect of these meteor impacts onto Earth, their frequency, size and 
some basic characterization regarding the meteor trail that is created [4]. We are developing SWIMSat as prototype 
CubeSat nodes to enable detection and tracking of meteors from Low Earth Orbit (LEO).  In the following section, 
we present an overview of the SWIMSat mission concept followed by the vision algorithm. 
 

3. SWIMSAT MISSION CONCEPT 
 
The proposed spacecraft design has matured thanks to a Phase A/B design study contract with the US Airforce through 
the University Nanosatellite Program (UNP).   The contract enabled the design team to bring the design from an early 
concept to a refined design approaching Critical Design Review [16-18].  Significant development work occurred that 
identified the major contributions in the project including selection of the right cameras for wide angle and narrow 
angle observation, the right computer interface to perform timely autonomous detection of the meteor events, in-
addition to development of meteor detection algorithms.  All subsystems achieved brass-board maturity (i.e. early 
working prototypes that can be tested in the laboratory under controlled conditions).    
 

Fig. 2. (Left) Chelyabinsk Meteor trail first detected by Chinese Geostationary 
satellite, Feng-Yun 2D (positioned at 86.5°E) 12 min after trail formation. (Right) 
Observed meteor entry from ground. 
 



3.1 SPACECRAFT 
 

The proposed SWIMSat nodes consists of two 
CubeSats,  each a 3U (10 cm × 10 cm × 34 cm) 
spacecraft (Fig. 3) with a mass of 4 kg.  The pair of 
spacecraft will be located in Low Earth Orbit and 
will be able to observe meteors within a 200 km 
diameter area.  Each spacecraft will be at the same 
altitude but be at approximately 25 km separation 
distance (determined during deployment).   Each 
CubeSat will be equipped with two science imagers, 
namely a Wide-Angle Camera (WAC) and a Narrow 
Angle Camera (NAC).   Each camera will use Sony 
CMOS detectors that can be set to 1.3 to 36 
Megapixels resolution. 
 

Each CubeSat will use the WAC to autonomously 
scan for meteor events.  Once a meteor is detected, 
the spacecraft will instantly rotate 90o to point the 
NAC and continue to track the meteor event.   The 
NAC will enable zoomed observation of the meteor.  
Upon autonomous detection and tracking by one of 
the CubeSats, the second CubeSat will be called by 
the first CubeSat to track the same meteor.  Once the 
two CubeSats continue to monitor the incoming 
object, they will be able to determine object position, 
velocity, deceleration, and angle of entry into the 
atmosphere.  Detailed event reports will be 
transmitted down to ground in real-time. 
 

Each spacecraft will be powered using body-mounted Spectrolab solar cells containing triple junction cells providing 
an average of 7 W of power during daylight.  The system will charge a 78 Whr GOMSpace Lithium Ion battery.  Depth 
of discharge will not exceed 50 % to maximize battery capacity and life. Power subsystem design suggests that it is 
sufficient for mission needs (see Table 1). The on board Attitude Determination Control System (ADCS) consists of 
the Maryland Aerospace MAI-400 that combines a suite of sensors such as two horizon sensors, MEMS IMU, 3 
reaction wheels and 3 magneto-torquers.  The system permits pointing at 1-2o with 3-axis stabilization. 
 

This unique 3U CubeSat design provides robust system margins (see Table 1). Note the budget includes 10% 
component margin. The spacecraft uses a ISIS Command and Data Handling (C&DH) computer board that contains 
an extremely power-efficient ARM 9 processor, with spacecraft watchdog functions and overall control of navigation, 
communication and control.  The ISIS CD&H has 6-levels of watchdog that enable robust handling of Single Event 
Upsets (SEUs).  The spacecraft will use the Beaglebone Black combined with the Beagle Bone Cape containing a 
Xilinx Spartan 6 LX9 FPGA board for rapid image processing.  The Beagle Bone Black + Cape has been flown on 
the RadSat CubeSat mission and is TRL 9. 
 

Transmitting down all of the captured video will heavily tax the spacecraft due to the high power required for data 
transmission.  This also presents challenges for thermal control.  In addition, it will require ground operators to be 
constantly on-watch which is logistically complex.  Therefore, these challenges require the spacecraft software 
perform data reduction and enable autonomous detection, tracking and reporting of critical events.  Beagle Bone Black 
with Black Cape FPGA board is well designed for this task, especially because it can be used to easily parallelize 
computational processes. 
 

The spacecraft will utilize NSL EyeStar-D2 Duplex Globalstar and UHF/VHF radio system for communication.   The 
Globalstar radio permits near-real-time communication with the spacecraft no matter where it is orbiting the planet.  
The radio has a data rate of 700 Bytes/second which adds up to 60 MB over 24 hours.  This is comparable to a S-band 
transmitter operating at 3 Mbits with transmit time of 3 minutes per day.  However, this avoids the cost of setup and 
maintaining an S-band ground station. 
 

Fig. 3.  SWIMSat CubeSat Node Layout. 



Electronics and all other thermal sensitive components will be located on top of the craft. High heat producing 
components are isolated and are located well away from other temperature sensitive electronics. The heat from internal 
components (using a metabolic heating strategy), 
in combination with resistive heaters will maintain 
a temperature of 0 to 45 oC. Critical thermal 
vacuum cycling tests will be performed to 
verify the as-built thermal design. The 
spacecraft will contain a deployable radiator to 
radiate excess heat from the Globalstar radio 
into space. 
 

The proposed spacecraft design borrows many 
elements from AOSAT I (CubeSat centrifuge 
mission to operate in Low Earth Orbit) [19-21] 
that will be launched in 2019, including use of 
common bus components, computer, power 
system and attitude control software.  
 

3.2 CONCEPT OF OPERATIONS 
 

A concept of operations for the proposed spacecraft is shown in Fig. 4.  The spacecraft will be launched into a Low 
Earth Orbit (LEO) of 420 to 650 km altitude on a 12-month primary mission.   As a baseline, we presume the CubeSats 
will be deployed from the International Space Station.   The first month will be spent calibrating the instruments and 
testing all subsystems to ensure the system is fully operational.  This will include collective calibration between the 
two CubeSats to pinpoint position of objects being tracked by both spacecraft.  After two months, the pair of CubeSats 
will be ready to perform monitoring and tracking of meteor and NEO events.  This will give us an opportunity to fully 
test the detection algorithms. 
 

 

 
Fig. 4. SWIMSat Concept of Operations 

 
The spacecraft upon autonomous detection of meteors and NEOs will send thumbnail pictures and critical data of the 
event by using the Globalstar radio.  This will be followed by tracking video and higher quality still-shots of the event 
from start to finish or when the CubeSats loses track of the event.   Critical data about each event will be published 
including magnitude, position, entry angle into the atmosphere, velocity, acceleration and estimate of impact altitude. 
 

Along the way, with operational experiences, improvements will be made to reduce false positives with the detection 
algorithm.  The collected data will be compiled into datasets available to the science community for evaluation with 

System Mass 
(kg) 

Volume 
(cm3) 

Avg. Power 
(W) 

Communications 0.3 500 0.5 
Onboard CPUs 0.2 50 2 
Instruments 0.9 450 2 
Power Conv. 0.45 600 0.5 
Attitude Det. & Control 0.76 500 2 
Structure 0.45 250 - 
Thermal 0.1 50 0.1 
Total 3.0 2400 7.1 
Margin 22 % 20 % 14 % 

Table 1. SWIMSat Node Systems Budgets 



other software.  After 12-18 months the spacecraft will have entered a fast degrading orbit and will undergo mission 
disposal.  In the following section we present the autonomous object detection algorithm. 
  

4. OBJECT DETECTION ALGORITM 
 
The goal of the object detection software is to (1) detect (2) image (3) track incoming meteors and transiting NEOs. 
The detection and tracking software will be resident on the spacecraft, enabling each CubeSat to perform this activity 
autonomously.  The software architecture is shown in Fig. 5.  In this architecture, raw images undergo filtering and 
masking followed by application of a feature detection algorithm to detect meteors.  Once detected, the software will 

then call upon the neighboring CubeSat and itself to start 
tracking the event.  Once the event is tracked, estimates of the 
position, velocity, acceleration and size of objects will be 
calculated using techniques outlined in Section 5.1.  This will 
culminate with compilation of videos and images that will be 
communicated to ground. 
 

Several different techniques are used for detection and 
tracking.  This includes blob detection [16] (Fig. 6), optical 
flow [16, 18], and Hue-Saturation-Value (HSV) filtering [18] 
with plans to use neural networks that will train on sets of 
meteor images developed using a physics based simulator.  To 
date the blob detection method has provided 70-90% accuracy 
in correctly detecting meteor events using both real and 
artificial data sources.  The blob detection method uses filters 
to first find a bright tail, followed by using blobs to detect the 
head. Once a threshold number of blobs are found that match 
this shape, then a ‘rubber band’ is drawn around the identified 
meteor event. 
 

Our proposed NEO and meteor detection method for 
unilluminated objects is inspired by transit photometry. Transit 
photometry is where bodies orbiting a star cause a dip in the 
light flux as they pass between the star and the observer. This 
method is generally used for detecting and characterizing 
exoplanets [22]. We apply this mode of thinking to the entire 
night sky. We track each visible star in the star field, and look 
for changes in the flux as a NEO passes between the star and 

our observer. With the smaller instruments one would find on a CubeSat, the star field tends to be sparse. However, 
given enough time, we are able to collect enough data to infer the existence of a NEO and compute its trajectory. 
 

This algorithm operates on two temporally ordered images at a time, image n and image n+k, for k>0 which we refer 
to as the reference image and operating image respectively.  First, the stars need to be categorized so decreases in flux 
can be tracked. There are many star-trackers that categorize stars in the star field, many with preprogrammed maps of 
the sky. For simplicity, we devised our own system based on Otsu's Binarization. We use Otsu's Binarization to 
categorize each pixel of an image as bright or dim. Otsu's Binarization is a nonparametric algorithm used in computer 
vision to sort a bimodal distribution of values into two distinct types. We run Otsu's Binarization before any operations 

Fig. 6. Blob detection identifies collection of bright pixels in 
prescribed shape, of length to width ratio. 

Fig. 5. Autonomous Object Detection Software 
Architecture 



on both our reference and operating image, to greatly reduce the search space of our method. The position of each 
bright pixel corresponds with a star and has its properties recorded separately for each image. 
 

After correcting for parallax shift between the two images, the operating star map can be subtracted from the reference 
star map. This operation can be done in parallel for each star, leveraging the use of the FPGA present on SWIMSat. 
The result is a set of anomalies, pixels that were bright in the reference image but dark in the operating image. This 
step inherently generates many false positives due to sensor readout noise and drift. 
 

Anomalies are stored for a period of j successive images, where j>k. The reference and operating images alone do not 
contain enough data to detect a transiting NEO. As we approach the jth image uncertainty begins to decrease. We 
know that sensor readout noise is Gaussian per-pixel, and that generally this noise is independent across all pixels 
(barring sensor defects). This implies the noise we see in each image is uniformly distributed across all the pixels. The 
trajectory of the NEO we expect to see are linear, as shown below. This allows us to extract useful data, even when 
the S/N ratio is below 1. 
 

We show that the objects we track appear linear to our observation satellite by taking the partial derivative of Kepler's 
equation of motion: 

𝑟𝑟 =
𝑎𝑎(1 − 𝑒𝑒2)
1 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

 

(1) 

 
where: 

𝑑𝑑𝑟𝑟
𝑑𝑑𝑒𝑒

=
𝑎𝑎(1 − 𝑒𝑒2)𝑒𝑒 𝑒𝑒𝑠𝑠𝑠𝑠𝑒𝑒

(1 + 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒)2
 

(2) 

 
 
Eccentricity e and semi-major axis a of the object are constant during an observation, only true anomaly f is changing. 
Although f varies, changes in f are very small for the timescale of our observation. This allows us use the small angle 
approximation for sin f and cos f, making dr/df linear. This implies that the path of a NEO will appear linear to our 
observer. Now we can use a simple linear model to detect and track the object. 
 

We capitalize on the apparent linearity of the trajectory by using RANdom SAmple Consensus (RANSAC) to generate 
a linear model from the aggregated anomalies. RANSAC operates very well on datasets with uniformly distributed 
outliers [23]. Like the star map subtraction, RANSAC lends itself very well to parallelism, and has already been 
implemented for FPGAs [24]. The model loss L of the model is used to classify whether or not a detection has occurred. 
When L is below a threshold, the resulting linear model is used as the estimated trajectory of the object. 
 

The presented algorithm is composed of three computationally expensive parts, the binarization phase, the star search 
phase, and the RANSAC phase. Otsu's Binarization runs in O(255 + n) where n is the number of pixels [25]. The star 
search phase does a Boolean check of every pixel which evaluates to O(n). The RANSAC phase consists of running 
R linear regressions with S stars for a runtime complexity of O(4RS).  Computing the loss of inliers takes O(2N), where 
N is the subset of stars that contribute to the line fit. Combining these results in O(k (4RS + 2N) ) [14], where k is the 
user-set upper limit on number of iterations. The default value of k=100 worked for us. The number of stars S is a 
small fraction of the number of pixels, so the time complexity of the RANSAC phase is dominated by the other phases. 
The overall runtime complexity of our method scales linearly with the number of pixels. 
 
 
 

5. RESULTS 
 
Tests were run on a synthetic 2000×1000-pixel star field displaying stars with an apparent magnitude of 6.5 or less, 
(Fig. 7) from [26]. Uniformly distributed readout noise was applied to the star field with a normal distribution of σ = 
0.5 DN per pixel. Otsu's Binarization began to break down around σ = 0.6  and limited us from adding more noise. In 
the future, this could be replaced by a Binarization method developed specifically for star fields. A 8-bit pixel intensity 
range was used, resulting in roughly σ = 0.2 of the total pixel range. The values k=1 and j=30 were used as our 
algorithm parameters. 
 



 
 

Fig. 7. A synthetic starfield of < 6:5 magnitude stars. 
 
Linear NEO trajectories were randomly generated, with start and end points along x=0 and x=2000 respectively. The 
y values were uniformly selected from the domain [0, 1000]. The position of the NEO transit was simulated over 30 
frames (Fig. 8). 

 
 
Fig. 8. An NEO’s position compiled from a series of images superimposed. Note that the dots are not the actual size 
of the occultation, they are greatly enlarged to aid the reader. 

 
The occultation of the NEO was simulated with a 3-pixel radius black circle (Fig. 9). Over non-star pixels, the 
algorithm failed to detect anomalies from the object, as expected. In fact, the NEO only passed over a bright pixel in 
roughly 30% of the total frames (Fig. 10 left).  25 trials were run with these parameters, of which 22 were flagged as 
detections by the algorithm. The standard deviation between the actual trajectory and the estimated trajectory was 6.15 
pixels (Fig. 10 right). On an 8-core 1st generation AMD Ryzen processor, the mean processing time per frame was 
0.97 seconds. By rewriting the program in C and offloading the model generation and star map operations to a 
SWIMSats FPGA processor, we believe the current iteration is efficient enough to run on the SWIMSat spacecraft. 
 



 
 
Fig. 9. The star field with a NEO of radius of 3 pixels transiting over 30 frames superimposed on top.  Human detection 
and tracking of these unilluminated objects is impossible. 
 
The noise models here could be improved in the future. Pointing noise was not taken into account due to the difficulty 
in generating an accurate model for CubeSats. Ultimately, another step will exist to filter pointing noise and to reorient 
the frame to account for pointing drift. This paper focuses on what a single satellite can do. However, for three 
dimensional localizations another observation of the NEO transit is required. This observation could be a ground-
based asset, but it would be interesting to see how multiple SWIMSats could work together to localize and track a 
NEO. Multiple SWIMSat observations could reduce the trajectory error and improve detection rates. 
 

  
 
Fig. 10. (Left) The anomalies are detected over many frames and plotted. The simulated Gaussian sensor readout noise 
makes fitting a line more difficult. At σ = 0.5 DN and below, the binarization process filters out much of the noise. 
However, with larger sigmas, Otsu's binarization begins to break down. (Right) One typical example of the actual 
trajectory of the NEO and the estimate produced by our algorithm 
 
5.1 MULTIPOINT OBSERVATION 
 
Here we describe multipoint observation using 2 spacecraft.  Using 2 GPS equipped spacecraft it is possible to 
concurrently track another object and determine its position.  Using the position calculation, we may then extend this 
to calculating velocity and acceleration through change in time. This capability can be easily extended to n spacecrafts 
to cover a greater range or obtain increased accuracy. Now consider the image is seen by 2 spacecrafts A and B as 
shown in Fig. 11. 



  
Fig. 11. Viewing geometry of 2 spacecrafts, where the intersection of the viewing planes yields the trajectory. 
 
Let the vectors [𝑎𝑎𝐴𝐴, 𝑏𝑏𝐴𝐴,𝑒𝑒𝐴𝐴] and [𝑎𝑎𝐵𝐵 , 𝑏𝑏𝐵𝐵,𝑒𝑒𝐵𝐵], parameterize the viewing planes of spacecraft A and B. Then the 
intersection of the 2 planes yields the trajectory of the meteor as shown in Fig. 11. The trajectory line or the radiant 
direction is given by: 
 

𝜉𝜉𝑅𝑅 =  
(𝑏𝑏𝐴𝐴𝑒𝑒𝐵𝐵 − 𝑏𝑏𝐵𝐵𝑒𝑒𝐴𝐴)

𝑑𝑑𝑅𝑅
 

 

𝜂𝜂𝑅𝑅 =
(𝑏𝑏𝐴𝐴𝑒𝑒𝐵𝐵 − 𝑏𝑏𝐵𝐵𝑒𝑒𝐴𝐴)

𝑑𝑑𝑅𝑅
 𝜁𝜁𝑅𝑅 =  

(𝑎𝑎𝐴𝐴𝑏𝑏𝐵𝐵 − 𝑎𝑎𝐵𝐵𝑏𝑏𝐴𝐴)
𝑑𝑑𝑅𝑅

 
(3) 

 
Where the length of the radiant vector is given by: 
 

𝑑𝑑𝑅𝑅 =  �(𝑏𝑏𝐴𝐴𝑒𝑒𝐵𝐵 − 𝑏𝑏𝐵𝐵𝑒𝑒𝐴𝐴)2 + (𝑏𝑏𝐴𝐴𝑒𝑒𝐵𝐵 − 𝑏𝑏𝐵𝐵𝑒𝑒𝐴𝐴)2 + (𝑏𝑏𝐴𝐴𝑒𝑒𝐵𝐵 − 𝑏𝑏𝐵𝐵𝑒𝑒𝐴𝐴)2 (4) 
 
The radiant right ascensions and declinations are now found from spherical coordinates as: 
 

𝛼𝛼𝑅𝑅 = tan−1
𝜂𝜂𝑅𝑅
𝜉𝜉𝑅𝑅

 𝛿𝛿𝑅𝑅 = sin−1 𝜁𝜁𝑅𝑅  (5) 

 
With the radiant known the inertial location of nth pixel of the meteor event can be determined. According to [32], 
we can define the following relations:  

The position vector of the event with respect to spacecraft A is given by: 
𝑋𝑋𝐴𝐴𝐴𝐴 = 𝑏𝑏𝑛𝑛𝑒𝑒𝐴𝐴 − 𝑒𝑒𝑛𝑛𝑏𝑏𝐴𝐴 
 

𝑌𝑌𝐴𝐴𝐴𝐴 = 𝑒𝑒𝑛𝑛𝑎𝑎𝐴𝐴 − 𝑎𝑎𝑛𝑛𝑒𝑒𝐴𝐴 
 

𝑍𝑍𝐴𝐴𝐴𝐴 = 𝑎𝑎𝑛𝑛𝑏𝑏𝐴𝐴 − 𝑏𝑏𝑛𝑛𝑎𝑎𝐴𝐴 
 

(6) 

The geocentric position of the nth pixel is then determined as: 

𝑋𝑋𝐴𝐴 = 𝑋𝑋𝐴𝐴𝐴𝐴 + 𝑋𝑋𝐴𝐴 𝑌𝑌𝐴𝐴 = 𝑌𝑌𝐴𝐴𝐴𝐴 + 𝑌𝑌𝐴𝐴 𝑍𝑍𝐴𝐴 = 𝑍𝑍𝐴𝐴𝐴𝐴 + 𝑍𝑍𝐴𝐴 (7) 

Using this approach, we have shown how the position of the object seen by the two spacecraft can be calculated. The 
technique is then extended to calculating velocity and acceleration in a moving frame, together with the size of the 
object.                    
 
 

6. CONCLUSIONS 
 
CubeSats thanks to their low developmental and launch costs offer new opportunities for rapidly demonstrating on-
orbit surveillance capabilities.  We propose the development of SWIMSat (Space based Wide-angle Imaging of 
Meteors) 3U CubeSat on-orbit demonstrator network that is designed to observe illuminated and unilluminated objects 
entering the Earth’s atmosphere and transiting in its vicinity.  We have presented a way to autonomously detect and 
track unilluminated objects with visual-light sensors. This method scales linearly with image size and is therefore very 



quick with respect to runtime complexity. Preliminary results show accuracy to less than ten pixels with a high 
detection rate.  Importantly this object detection and tracking task can’t be performed by humans.  With this method, 
our SWIMSat orbital observatory network could contribute to the search for meteors and NEOs. While initially 
developed for CubeSats, this method may be of use to larger satellites or even ground-based observatories. 
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