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Abstract

This work describes the design and optimization of spacecraft swarm mis-
sions to meet spatial and temporal visual mapping requirements of missions to
planetary moons, using resonant co-orbits. The algorithms described here are
a part of Integrated Design Engineering and Automation of Swarms (IDEAS),
a spacecraft swarm mission design software that automates the design trajecto-
ries, swarm, and spacecraft behaviors in the mission. In the current work, we
focus on the swarm design and optimization features of IDEAS, while showing
the interaction between the different design modules. In the design segment,
we consider the coverage requirements of two general planetary moon mapping
missions: global surface mapping and region of interest observation. The con-
figuration of the swarm co-orbits for the two missions is described, where the
participating spacecraft have resonant encounters with the moon on their orbital
apoapsis. We relate the swarm design to trajectory design through the orbit in-
sertion maneuver performed on the interplanetary trajectory using aero-braking.
We then present algorithms to model visual coverage, and collision avoidance
in the swarm. To demonstrate the interaction between different design mod-
ules, we relate the trajectory and swarm to spacecraft design through fuel mass,
and mission cost estimations using preliminary models. In the optimization
segment, we formulate the trajectory and swarm design optimizations for the
two missions as Mixed Integer Nonlinear Programming (MINLP) problems. In
the current work, we use Genetic Algorithm as the primary optimization solver.
However, we also use the Particle Swarm Optimizer to compare the optimizer
performance. Finally, the algorithms described here are demonstrated through
numerical case studies, where the two visual mapping missions are designed to
explore the Martian moon Deimos.
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Exploration, Resonant Co-orbits, Evolutionary optimization algorithms

1. Introduction

Planetary moon exploration sheds fundamental insight into topics such as
solar system origin, and astrobiology. Specifically, the in situ exploration of
small irregular moons are being pursued to study the formation of planets and
search for extraterrestrial habitats (Castillo-Rogez, Pavone, Hoffman, et al.,
2012). Additionally, several technologies for in situ exploration of these moons
are being developed (Nallapu, Thoesen, Garvie, et al., 2016). However, the un-
certainties in the knowledge of surface properties can be challenging for in situ
missions without prior reconnaissance (Balázs, 2018). However, small planetary
moons, such as the Martian moons, have small spheres of influence (Wallace,
Parker, Strange, et al., 2012), suggesting that it is virtually impossible to per-
form reconnaissance from Keplerian orbits around them. (Zamaro and Biggs,
2016), leaving flybys as a viable option. In this work, we focus on visual map-
ping reconnaissance, which faces two important challenges: firstly, at a given
time, nearly 50 % of the moon is shadowed from Sunlight, and secondly, most
planetary moons are tidally locked uniform rotators (Aleshkina, 2009), which
limits the surface coverage at a fixed encounter location. Clearly, single space-
craft flybys suffer from spatial and temporal coverage limitations, suggesting
that multi-spacecraft missions are efficient alternatives. However, the design
of a swarm mission adds additional layers of difficulty to the multi-disciplinary
spacecraft mission design (Wertz, Everett, and Puschell, 2011). Especially, dur-
ing the initial mission planning phase where several decisions are free variables,
an automated architecture that provides optimal mission concepts will acceler-
ate the design process (Wertz, Everett, and Puschell, 2011). To provide such
an automated platform, we proposed the Integrated Design Engineering and
Automation of Swarms (IDEAS) software in Nallapu and Thangavelautham
(2019a). The IDEAS architecture divides a swarm mission design into three
individual optimization problems: trajectory, swarm, and spacecraft optimiza-
tion. The architecture of the IDEAS software is presented in Figure 1. As
shown here, the three individual modules: Automated Trajectory Designer,
Automated Swarm Designer, and Automated Spacecraft Designer modules will
form the Mission Solver module where the three design processes are automated.
The design modules receive high-level inputs such as objectives, constraints, and
mission parameters through a user interface. The IDEAS is developed in the
MATLAB programming environment because of its inbuilt state-of-the-art nu-
merical propagators and optimizers (Hanselman and Littlefield, 2005). In this
work, each broad qualitative decision (such as the use of aerobraking, and use
of co-orbits) is referred to as behavior which results in a different set of design
variables. An inventory of such behaviors is maintained in the Knowledge Base
module of IDEAS. The Knowledge Generator module is used for populating
these behavior inventories. Additionally, space mission design is an iterative
process (Wertz, Everett, and Puschell, 2011). For this reason, IDEAS will have
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a Mission Analyzer module that checks if the design requirements are satisfied.
A key advantage of such a unifying architecture is that it reduces the scope
for bottlenecks such as duplication, and incompatibility of different designed
systems.

Figure 1: Software architecture of the proposed IDEAS software to provide an end-to-end
design framework for spacecraft swarm missions.

In this work, we use the Automated Swarm Designer module to design space-
craft swarms that meet spatial and temporal requirements on visual mapping
missions to planetary moons. The swarm will be deployed on resonant co-orbits,
which have periodic flybys the moon on their apoapsis. Two types of visual map-
ping missions are considered in the current work: i) global surface mapping, ii)
region of interest (RoI) observation. The global surface mapping mission fo-
cuses on spatial coverage, while the RoI observation mission mainly focuses on
the temporal coverage requirements. While the focus of the current work is on
the swarm designer module, we demonstrate the interaction between different
design modules by designing the interplanetary trajectory, and preliminary de-
sign of spacecraft in the swarm. We begin by presenting the requirements of
the two missions. Noting that their coverage requirements are different, two
different configurations of the swarm are presented. Both configurations involve
encounters with the target moon at a specified orbital location when the space-
craft are located on their apoapsis. We then relate the swarm design with the
trajectory design problem through their orbit insertion maneuvers. We assume
that the swarm uses aerobraking (Vallado, 2013) at the central planet host-
ing the moon, to enter into these co-orbits. The orbit insertion maneuver will
be split into two components: a planar capture that requires a tangential im-
pulsive maneuver on the periapsis of the arrival hyperbola, and an orientation
change of the arrival hyperbola to facilitate a moon encounter at the specified
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orbital location. This allows us to constrain the orbital elements of the co-
orbits, such that the total orbit insertion fuel requirements are upper-bounded.
We then present algorithms to model coverage and collision avoidance among
the swarms. Following this, we relate the two problems to the spacecraft design,
by estimating the fuel mass, and mission costs through preliminary estimating
relations. We then formulate the trajectory and swarm optimization problems
of the two missions as mixed-integer nonlinear programming (MINLP) problems
which are solved using two evolutionary optimization algorithms (Rao, 2019).
For simplicity, we maintain the same trajectory design problem for both mis-
sions. A genetic algorithm (GA) solver (Conn, A. Perez, Plice, et al., 2017) is
used as the primary optimization solver, however we use the particle swarm op-
timizer(PSO) algorithm (Kennedy and Eberhart, 1995) using penalty functions
(Rao, 2019) in-order to compare the optimizer performance. Finally, we develop
numerical case studies of the two visual mapping missions, by designing swarm
missions to explore the Martian moon Deimos using the IDEAS architecture.
The optimal trajectory and swarm designs are noted and their performance
is examined. A seed spacecraft with dry mass populated using commercially
available off-the-shelf small spacecraft hardware is used, with fuel requirements
and costs computed using the maneuver requirements of the trajectory and
swarm design. The organization of this work is as follows. Section 2 presents
related work done on planetary moon exploration, and swarm missions. Section
3 presents the modeling methodology used in the current work. Here we present
the models to configure the resonant co-orbits of the swarm for the two missions.
The constraints on the classical orbital elements (COEs) of the co-orbits from
the spacecraft camera and the interplanetary trajectory are presented, along
with algorithms to model the surface coverage of the moon, collision avoidance,
and mission costs. These models are used in Section 4 to formulate the MINLP
problems corresponding to the trajectory and swarm design problems of the
two missions. The optimization solvers and their implementation are also de-
scribed here. In section 5 we present the results of case studies where the two
visual mapping missions to explore Deimos are designed. The dry mass of the
seed spacecraft is described in Appendix A. Finally, Section 6 summarizes the
key contributions of the current work and identifies pathways forward for the
development of IDEAS.

2. Related Work

Co-orbital exploration has been a major source of planetary moon explo-
ration. For instance, the exploration of Martian moons has been largely done
from co-orbital observations of Martian orbiting spacecraft (Duxbury, Zakharov,
Hoffmann, et al., 2014). Resonant Co-orbits were studied as viable trajectories
to explore Europa (Buffington, 2014). In the near future, dedicated missions to
planetary moons such as the MMX (Campagnola, Yam, Tsuda, et al., 2018),
JUICE (Grasset, Dougherty, Coustenis, et al., 2013), and Europa Clipper mis-
sion (C. B. Phillips and Pappalardo, 2014) have been planned. Existing work
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on co-orbit design focused on the derivation of orbital elements assuming equa-
torial and circular moon orbits (Conte, 2014). Coverage modeling, on these
co-orbits, is a critical aspect of the current work. Most coverage evaluation
algorithms assume a spherical target and a circular sensor (Wertz, Everett, and
Puschell, 2011). Camera transforms, on the other hand, provide a faster method
to model the coverage of irregular shapes, inside the field of view (FoV) of a
square sensor (Sobel, 1972). In the current work, we use camera transforms
to model the instantaneous coverage of the spacecraft swarms. Traditionally,
swarm missions have been classified into 2 types: formation flying and constel-
lations (Bandyopadhyay, Foust, Subramanian, et al., 2016). However, recog-
nizing that multi-spacecraft missions can be designed with a wide variety of
interactions, we broadly classify spacecraft swarm architectures into 5 classes as
described in Nallapu and Thangavelautham (2019c):

1. Class 0 Swarms: This is simply a collection of multiple spacecraft that
exhibit no coordination either in movement, sensing, or communication.

2. Class 1 Swarms: Each spacecraft coordinates its movement resulting in
formation flying but there is no explicit communication coordination or
sensing coordination.

3. Class 2 Swarms: Each spacecraft coordinates movement and communica-
tion including using Multiple-Input-Multiple-Output (MIMO) or parallel
channels. The swarm has collective sensing capabilities but is not opti-
mized with respect to the swarm.

4. Class 3 Swarms: Each spacecraft coordinates sensing/perception with
communication and positioning/movement but is not collectively opti-
mized. Individual losses can have uneven outcomes including the total
loss of the system.

5. Class 4 Swarms. Each spacecraft exploits concurrent coordination of po-
sitioning/movement, communication, and sensing to perform system-level
optimization. This system acts if it’s a single entity. Communication,
computation, and sensing are evenly distributed within the swarm. Indi-
vidual losses result in a gradual loss in system performance.

Class 0 swarms have been successfully realized for several Earth applications
(Grewal, Weill, and Andrews, 2007). We classify constellations such flower con-
stellations (Mortari, Wilkins, and Bruccoleri, 2004) as Class 1 swarms due to the
formations of their trajectories. Class 2 swarms are being developed for appli-
cations such as the deflection assessment of binary asteroids (Galvez, Carnelli,
Michel, et al., 2013). Class 3 swarms have been used in interplanetary gravime-
try applications (Zuber, D. E. Smith, Watkins, et al., 2013). A Class 4 swarm
mission design is yet to be studied. Parametric mission design and mission cost
modeling is well studied in the literature (Wertz, Everett, and Puschell, 2011).
Existing research has also focused on the development of mission design tools
for spacecraft swarms around Earth (Conn, A. Perez, Plice, et al., 2017). Due
to the involvement of integer parameters, and nonlinear functions, many swarm
design problems result in MINLP problems (Rao, 2019). Evolutionary algo-
rithms, such as the genetic algorithm (Conn, A. Perez, Plice, et al., 2017), and
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particle swarm optimizer (Kennedy and Eberhart, 1995), have provided robust
solutions to MINLP optimization. Genetic algorithms have also been applied
to spacecraft communication systems (Lohn, Linden, Hornby, et al., 2004), and
trajectories (Hartmann, Coverstone, and Williams, 1998). Our previous work
on IDEAS focused on developing the Automated Swarm Designer module of
IDEAS, where we presented design optimization case studies of swarm mis-
sions to small bodies using genetic algorithm optimization. The developed case
studies entail Class 0 swarms for Earth observation in Nallapu and Thangave-
lautham (2019b), and cis-lunar communications in Nallapu, Vance, Xu, et al.
(2020); Class 1 swarms for global surface mapping of spinning asteroids were
also designed in Nallapu and Thangavelautham (2019a); Class 2 swarms for RoI
observation on spinning asteroids in Nallapu and Thangavelautham (2019c),
global surface mapping of tumbling asteroids in Nallapu, Xu, Marquez, et al.
(2020). Case studies to planetary moons include global surface through hyper-
bolic flybys Nallapu and Thangavelautham (2020), and polar resonant co-orbits
in Nallapu and Thangavelautham (2019d). In the current work, we present
the design optimization of Class 2 visual mapping swarm missions to planetary
moons, for global surface mapping, and RoI observation, where swarm will be
in arbitrarily oriented resonant co-orbits around the central planet.

3. Design Modelling

This section describes the models and parameters used in the current work.
We begin by defining the coverage requirements of the two mission types in
the current work. For the sake of computational simplicity, the motion of the
spacecraft and the target moon is modeled assuming the spherical two body
gravity from the central planet (Vallado, 2013). Furthermore, we assume that
the COEs of the moon are known, and a rough shape model of the moon is
available to estimate surface coverage.

3.1. Mission Design and Parameters

The coverage requirements associated with the two missions are as follows:

Global Surface Mapping. In these missions, the spacecraft are required to meet
a minimum cumulative surface coverage PMap,R requirement, with a maximum
ground resolution of xR in one orbit of the moon.

RoI Observation. The RoI observation mission adds the temporal aspect of
the coverage requirement, where the objective is to observe a target region of
interest (RoI) on the moon’s surface which is specified by its longitude ϕx,E and
latitude ϕy,E and has a square angular spread of ΦE as illustrated in Figure
2. The RoI is required to be imaged at a maximum resolution of xR and needs
to be observed for a minimum duration of tRoI,R, with a minimum cumulative
coverage requirement of PRoI,R in one orbit of the moon.
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Figure 2: Parameters involved in defining the region of interest over the surface of the target
body.

Spacecraft Camera Requirements. For a given spacecraft camera, the maximum
flyby altitude hmax to meet the xR requirement, and half-field of view of the
camera ηC is computed as (Wertz, Everett, and Puschell, 2011)

hmax =
xRDC

λC
(1)

and

sin ηC =

(
rT,av

rmax

)
cos εf (2)

Where DC and λC are the aperture diameter of the camera, and imaging
wavelength of the camera sensor respectively. The parameter εf indicates a
slant angle tolerance at the imaging radius rmax given by

rmax = rT,av + hmax (3)

Where rT,av is the average radius of the moon. Using an altitude tolerance
∆hf , the spacecraft will pass the target at a radial distance rf given by

rf = rmax −∆hf (4)

It should be noted here that rf is not the minimum distance of the space-
craft to the moon, but is a point on the spacecraft trajectory where the visual
coverage of the spacecraft meets the xR requirement. The camera of the space-
craft is modeled as a pinhole camera with a square sensor (Sobel, 1972), whose
pyramidal field of view (FoV) is used to model the instantaneous footprint of
the camera on the surface of the target.

3.2. Swarm Configurations

The swarm will be configured to visit the moon over Nv encounters. During
a visit j, the moon will be located at a true anomaly of fv,j on its orbit. Since
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Figure 3: The configuration of the spacecraft swarms for in the global surface mapping (left)
and ROI observation (right) missions.

the coverage requirements of the two missions are different, the co-orbits of the
swarm will be configured differently for these two missions, as illustrated in
Figure 3

Specifically, each encounter in the global surface mapping mission will con-
tain multiple spacecraft, while in case of the RoI observation missions, each
encounter will only contain a single spacecraft. Therefore, the number of space-
craft in case of the mapping mission can be expressed as

NSw,map =

Nv∑
j=1

Nv,j (5)

where Nv,j is the number of spacecraft in visit j. In the case of the RoI
observation swarm, the number of spacecraft in the swarm can be expressed as

NSw,RoI =

Nv∑
j=1

1 = Nv (6)

3.3. Dynamical Models

Since the current problem involves simulating the motion of multiple entities
such as the spacecraft, planets, and the target moon, the key reference frames
used in the current work are described here:

Planetary Inertial Frame. The motion of the target moon and the spacecraft
swarm is modeled in the inertial J2000 reference frame (Vallado, 2013) centered
at the planet. The vectors in this planetary inertial frame will be denoted by
N .

Target Moon Frames. Two key reference frames are used in the current to study
the surface coverage of the moon.
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Target Inertial A target centered inertial frame T is used to note the
distance of the spacecraft to the moon. We construct the T frame by translating
the N frame to the center of the target moon.

Target Fixed Since the moon is assumed to be a uniform rotator, we
model the rotation of the surface in a target centered rotational frame TRot.
The raw shape model of the target moon is described by a unique set of vertices
VT , and triangular face connectivity set FT (Scheeres, 2016). For the sake of
simplicity, we assume that the vertices of the raw shape model are described
in the TRot frame with its z axis as the rotation pole as shown in Figure 2.
Therefore, at a simulation time t, the vertices are expressed in the T frame
using the principal z axis rotational transformation (Schaub and Junkins, 2013)
of VT by an angle θT (t). In order to enforce tidal locking (Aleshkina, 2009), we
set θT (t) to

θT (t) = mod

(
f0 +

(
2π

PT

)
t, 2π

)
(7)

Where f0 is the true anomaly of the moon at the start of the simulation,
and PT is the orbital period of the moon.

3.4. Co-orbit Encounter

The co-orbits in the current work are designed such that the deployed space-
craft encounter the moon at the flyby distance noted from Equation 4 on their
orbital apoapsis. Since only two body dynamics are considered, the COE de-
scription is used to define the spacecraft and moon orbits (Vallado, 2013). Here
we derive constrain the COEs of the resonant co-orbits to model the spacecraft
motion in the N frame.

True anomaly. Since the designed encounters occur on the apoapsis of the co-
orbits, the true anomaly at the encounter epoch is given by fSw = 180 deg
(Vallado, 2013).

Resonant Semi-major Axis. The resonance ensures that the spacecraft encoun-
ters with the moon will repeat after every p orbits of the moon or after every q
orbits of the spacecraft. Using Kepler’s third law (Vallado, 2013), we can write(

aT
aSw

) 3
2

=
p

q
(8)

where aT and aSw are the semi-major axis of the moon and the spacecraft
respectively. It can be noted from Equation 8 that p, q, and aSw do not depend
on the location of the moon, and are therefore constant for all spacecraft in the
swarm.
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Figure 4: Geometrical parameters involved in defining the spacecraft apoapsis vectors.

Eccentricity. Since Equation 4 describes the spacecraft distance from the moon,
two additional coordinates are required to describe the encounter in three di-
mensions. Let θx,i, and θy,i denote the azimuth and elevation of spacecraft i
during an encounter j as shown in in Figure 4. The corresponding apoapsis
vector N R̄a,i is expressed as

N R̄a,i = N R̄Tj + N R̄Tji (9)

where N R̄Tj
is the position vector of the moon to the central planet at a

true anomaly fv,j , and N R̄Tji is given by

N R̄Tji = rf [cos θx,i cos θy,i sin θx,i cos θy,i sin θy,i]
T

(10)

The left superscript beside a vector indicates the reference frame in which the
vector is resolved. It should be noted that while the left-hand side of Equation
10 is the spacecraft location with respect to the moon in the T frame, we set
T R̄Tji = N R̄Tji following the assumption that the T is constructed by a pure
translation of the N frame. The eccentricity of the spacecraft co-orbit esw,i and
its periapsis altitude hp,i can then be determined as (Vallado, 2013)

esw,i =

(
ra,i
asw

)
− 1 (11)

and

hp,i = asw (1− esw,i)−RPl (12)

Where ra,i is the magnitude of N R̄a,i, and RPl is the radius of the central
planet.

Boundary Values Using Equation 9, ra,i is bounded through the triangle
inequality (Marghitu and Dupac, 2012) as

min
(
rTji

)
− rf ≤ ra,i ≤ max

(
rTji

)
+ rf (13)
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Where rTji denotes the magnitude of N R̄Tji. The values of min (rT,j), and
max (rT,j) occur at the moon’s periapsis (fv,j = 0 deg), and apoapsis (fv,j =
180 deg) respectively (Vallado, 2013). Let ra,B denote the set of minimum
and maximum boundary values of ra,i, which allows us to compute the set
of bounding eccentricities eB using Equation 11. Additionally, the minimum
periapsis altitude of the co-orbit hp,min is also computed using Equation 12.
The boundary values are used to evaluate the feasibility of a specified resonance
as described in the following subsections.

Orbital Orientation. The orientation orbital elements: the right ascension of
the ascending node (RAAN), inclination, and argument of periapsis define a
z−x− z Euler angle rotation matrix to transform the orbit in a perifocal frame
of the planet to the N frame (Schaub and Junkins, 2013). The task at hand, is to
compute the orientation elements such that N R̄a,i of spacecraft i passes through
the encounter location specified by fv,j (see Figure 3). However, for planar orbit
insertions, the orientation orbital elements are constrained by the hyperbolic
tube defined by the incoming excess velocity vector N V̄ −∞,2, and orbits whose
orientation elements are not supported by the tube require an orientation change
maneuver (Vallado, 2013). This couples the co-orbit design of the swarm with
their interplanetary trajectory. Here we use the Triad algorithm (Schaub and
Junkins, 2013) to determine the perifocal to N frame rotation matrix [NPi] of
spacecraft i, and to estimate the maneuver cost associated with the orientation
change ∆vOC,i.

Triad Construction We begin by assuming that N V̄ −∞,2, and the periapsis
altitude of the arrival hyperbola hp,0 are known ahead through trajectory design.
The N frame vectors N R̄a,i and N V̄ −∞,2 can now be resolved in the perifocal
frame Pi of spacecraft i (Vallado, 2013). A possible rotation matrix [NPi] can
now be defined from the Triad algorithm as (Schaub and Junkins, 2013)

[NPi] = [n̂1 n̂2 n̂3][p̂i,1 p̂i,2 p̂i,3]T (14)

where the unit basis vectors are defined as

n̂1 =
N R̄a,i

ra,i
p̂i,1 =

P
i R̄a,i

ra,i

n̂2 =
N R̄a,i×N V̄ −∞,2

|N R̄a,i×N V̄ −∞,2|
p̂i,2 =

P
i R̄a,i×P

i V̄ −∞,2

|Pi R̄a,i×P
i V̄ −∞,2|

n̂3 = n̂1 × n̂2 p̂i,3 = p̂i,1 × p̂i,2

(15)

The orientation elements of spacecraft i can be extracted from the rotation
matrix [NPi] (Schaub and Junkins, 2013). While it appears that Equations 14,
and 15 always provides a valid [NPi], the triad algorithm often looses informa-
tion about the second reference vector, due to the cross product operation in
defining n̂2 and p̂i,2. This allows us to write the error in ∆vOC,i as

∆vOC,i = [NPi]
P
i V̄
−
∞,2 − N V̄ −∞,2 (16)
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We interpret ∆vOC,i as the maneuver cost of spacecraft i to correct N V̄ −∞,2

and have the same orientation elements of the selected co-orbit. The 6 COEs
presented here describe the design of the resonant co-orbit which facilitates an
apoapsis encounter with the moon.

3.5. Trajectory Design with Aerobraking

Using Lambert’s solver, the excess velocity vectors can be determined for
a given launch epoch DL, and arrival epoch DA, from which we determine
the characteristic energy at Earth launch C3,E , time of flight TF and N V̄ −∞,2

(Vallado, 2013). It should be noted here that while the focus of the current work
is the design of swarm missions, we only note a single pair of launch and arrival
epochs. We assume that the swarm is launched from a single launch provider
(Schoolcraft, Klesh, and Werne, 2016). However, the launch configurations
are not addressed in the current work. Assuming that the central planet has
sufficient atmosphere, the spacecraft in the swarm will be designed to enter into
their desired co-orbits though the aerobraking maneuver. This aeroassist occurs
in four phases: HEO capture, walk-in, main phase, walk-out (Vallado, 2013).
In the current work, we use simplified models for these four phases where the
aerobraking occurs at a fixed periapsis altitude hA from the surface of the planet
using impulsive tangential maneuvers. During the HEO capture, the spacecraft
perform an insertion maneuver at their periapsis located at an altitude hp,0
from the surface of the central planet, into a high eccentricity orbit (HEO)
with an eccentricity e1. Let ra,HEO denote the apoapsis radius of this orbit.
During the Walk-in phase, the spacecraft perform a maneuver at their HEO
apoapsis to reduce their periapsis altitude to hA. Let eI1 denote the eccentricity
of this intermediate orbit. This begins the main phase where, upon periapsis
passage, the altitude of apoapsis reduces while the periapsis altitude remains the
same, without the need for additional maneuvers. However, it is acknowledged
here that in reality additional maneuvers are required to maintain the periapsis
altitude during the main phase (Spencer and Tolson, 2007). Once the apoapsis
radius falls to the target value described by ra,i, they perform a maneuver at
their apoapsis, to increase the periapsis altitude from hA to their corresponding
hp,i. Since the ra,i and hp,i vary for each spacecraft in the swarm, we use their
boundary values to estimate the maximum velocity change ∆vOI,max required
for orbit insertion with aerobraking. Let eI2,B denote the boundary value (either
maximum or minimum) of the eccentricity of the intermediate spacecraft orbit
after the main aerobraking phase corresponding to an apoapsis radius of ra,B .
Then the ∆vOI,max can be expressed as (Vallado, 2013)

∆vOI,max = ∆vHEO + ∆vWI + max (∆vWO,B) (17)

Where
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∆vHEO =

√
v2
∞,2 +

2µPl

hp,0 +RPl
−

√
µPl (1 + e1)

hp,0 +RPl

∆vWI =

√
µPl (1− e1)

ra,HEO
−

√
µPl (1− eI1)

ra,HEO
(18)

∆vWO,B =

√
µPl (1− eI2,B)

ra,B
−

√
µPl (1− eB)

ra,B

where µPl denotes the gravitational parameter of the central planet, and
vinfty,2. The intermediate elements eI1 , ra,HEO, and eI2,B can be computed
from the conic section geometry (Vallado, 2013). The boundary values of ra,B
and eB can be noted through Equations 13 and 11. We interpret ∆VOI,max

as the worst case maneuver cost required for capture assuming only planar
maneuvers.

3.6. Swarm Behavior

All spacecraft are assumed to be identical in terms of subsystems, and the
identical design is referred to as the seed spacecraft. However, their behavior will
follow the Class 2 behavior described in Nallapu and Thangavelautham (2019c),
where the swarm has a Leader spacecraft, while the remaining are the Observer
spacecraft. The Leader, in addition to mapping, will gather the information
from the Observers and relay it to a ground station on Earth when its distance
to the moon exceeds rmax. A distance-based selection algorithm described in
Nallapu and Thangavelautham (2019d) is used to identify the leader spacecraft
in the swarm. The swarm architecture is summarized in Figure 5. In the current
work, the communication interaction between the spacecraft is not described,
and only the mapping behavior is studied.

Figure 5: Behavior of different spacecraft in the Class 2 swarm described in the current work.

Spacecraft. The spacecraft is modeled as a rigid body, with the camera mounted
along the z axis of its body frame as shown in 5. During a mapping operation,
we assume that all spacecraft track the reference attitude described in Tsiotras,
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Shen, and Hall, 2001, where the camera tracks the line of sight (LoS) to a
specified point. For the global surface mapping missions, this specified point is
the center of the target moon (shown in Figure 5), while in the RoI observation
mission, this is the point on the surface located at spherical co-ordinates rT,av,
ϕx,E , and ϕy,E .

3.7. Coverage Evaluation

To provide a generalized description of the coverage algorithms for both
missions, we consider the coverage of sub-region described by faces FTR ⊆ FT .
Furthermore, we assume that the vertices in VT are expressed in the T frame.
We use a series of 3 filters on VT and FTR to estimate the instantaneous and cu-
mulative coverage of the moon: illumination, LoS culling, and clipping (Nallapu
and Thangavelautham, 2019d). The three filters are described as follows:

Illumination. At a time t, the set of faces that are illuminated by the Sun are
noted using the inner product between the moon-to-Sun direction T R̂TH and
the normal vector to each face. If T n̂k,TR denotes the instantaneous normal

vector of face k in FTR, the face is considered illuminated if N R̂TH .
T n̂k,TR > 0.

This filters out the set of all illuminated faces Fl(t) ⊂ FTR at t. However, an
exception to this rule is when the Sun direction is eclipsed by the transiting
planet, as described in Nallapu and Thangavelautham (2019d). When this
happens all faces are considered to be shadowed, and will not be observed.

LoS Culling. The faces in Fl(t) are culled with respect to the line of sight
(LoS) from spacecraft to the specified point on the target. Let T R̄Ti denote
the position vector of spacecraft i with respect to target, and T n̂k,l denote the
normal vector of face k in Fl(t) at t. The face with T R̄Ti.

T n̂k,l ≤ 0 will not be
observed by the spacecraft. This operation further filters the set of illuminated
faces that face the spacecraft i FC,i(t) ⊆ Fl(t).

Clipping. While the above two operations filter the faces, the clipping operation
filters the vertices of FC,i which fall inside the FoV of spacecraft i. In the clipping
operation, we construct the camera transformation matrix, which transforms the
FoV into a unit cube (Sobel, 1972). The instantaneous camera transformation
matrix Gi into the image space of spacecraft i is given by

Gi = V T1T2 (19)

.
where

T1 =

[
[TBi] 0

0 1

]
4×4

(20)
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T2 =

[
[I3×3] −R̄Ti

0 1

]
4×4

(21)

.
and

V =


cot ηC 0 0 0

0 cot ηC 0 0

0 0 faC + neC
faC − neC

−2faC neC
faC − neC

0 0 1 0


4×4

(22)

The matrix [TBi] is the rotation matrix that transforms the body frame of
spacecraft i to the T frame, and [I3×3] is the 3 × 3 identity matrix. The LoS
tracking reference attitude described in Tsiotras, Shen, and Hall, 2001 is used
to model [TBi]. The parameters neC , and faC indicate the near field and far
field distance of the spacecraft’s camera. Here, we set faC = hmax, and select
an arbitrary small value of neC for the spacecraft camera. Let [Na Nb Nc]T

denote the position vector of a vertex that forms at least one triangular face in
FC,i(t). The vertex is resolved in an intermediate camera space Ci of spacecraft
i by using the camera transformation

[
Cia Cib Cic Cid

]T
= G

[
Na Nb Nc 1

]T
(23)

.
Where Cid is the apparent depth of the projection. The camera space is

normalized by Iid to obtained the scaled coordinate in the image frame Ii of
spacecraft i, ie,

[
Iia Iib Iic

]T
=

1
Cid

[
Cia Cib Cic

]T
(24)

.
The vertex [Na Nb Nc]T will fall inside the FoV of spacecraft i if the

absolute value of its coordinates lies in a unit cube (Sobel, 1972).

abs
([

Iia Iib Iic
]T)

<
[
1 1 1

]T
(25)

.
If a vertex fails the clipping criterion in Equation 25, all faces in FC,i(t) that

are formed by it are omitted from the coverage computation. The final result of
these three filters is a set of faces FFoV,i(t) whose faces are illuminated by the
Sun, and whose vertices fall inside the FoV of spacecraft i at a time t.
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Instantaneous Coverage. At time t, the set of faces observed FIns(t) is computed
as

FIns(t) =

NSw⋃
i=1

FFoV,i(t) (26)

Where NSw is the number of total spacecraft in the swarm. To reduce the
computational load, only those spacecraft whose distance to the target is below
rmax are used in the computation of Equation 26. The three filters described
here are illustrated in Figure 6.

Figure 6: Illustration of the three filters used to model the instantaneous spacecraft coverage.

Cumulative Coverage. Similarly, we note the cumulative faces FCum(tsim) ob-
served up to the simulation time tsim as

FCum(tsim) =

tsim⋃
t=0

FIns(t) (27)

Figures of Merit. The area of surface described by faces in FCum(tsim) is the
sum of areas of their triangular areas (Goldman, 1991). Let ACum(tsim) and
ATR denote the cumulative surface area of the faces FCum(tsim) and FTR respec-
tively. Then the figure of merit considered in the current work is the cumulative
percentage of surface coverage given by,

PCum(tsim) =
ACum(tsim)

ATR
× 100 (28)

This allows us to define the individual figures of merit specific to the two
different missions described in the current work as follows:

Global Surface Mapping For global surface mapping, we set FTR = FT

for evaluating the coverage over the entire surface. The corresponding cumula-
tive percentage of surface coverage by the swarm, computed from Equation 28,
is denoted by Pmap(tsim).
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RoI Observation For RoI observation, we set FTR = FRoI , which is the
set of surface faces that lie inside the RoI. The faces in FRoI are modeled by
using the clipping operation, where a virtual camera is placed at the center of
the target body, and the viewing direction is located along the position vector
from the moon center to the RoI location. In the case of the RoI mission,
the corresponding cumulative percentage of surface coverage by the swarm is
denoted by PRoI(tsim). Additionally, since the RoI observation is a time-based
mission, we also measure the simulation time tRoI for which the RoI was in the
FoV of at least one spacecraft.

3.8. Collision Avoidance

We design the spacecraft trajectories to be ballistically free of collisions us-
ing a binary collision flag parameter. Specifically, we check if the trajectories:
i. collide with the moon and ii. collide with other spacecraft in the swarm.
Collisions with the central planet are avoided by placing a minimum periapsis
altitude constraint on the trajectory design. The moon and spacecraft collisions
are checked as follows:

Moon Collisions. By propagating the orbital motion of the spacecraft, we note
the magnitude of the distance of spacecraft i to the moon rTi throughout the
simulation time. we require that rTi > rT,max, for all i = 1, 2, ...NSw, in the
time span [0, Tsim]. Here rT,max is the maximum radius of the target shape
model.

Spacecraft Collisions. Using a similar approach, if ri,l denotes the magnitude of
position vector from spacecraft i to spacecraft l, we require that ril > rcol, for
all i, j = 1, 2, ...NSw and i 6= l, in the complete simulated time span [0, Tsim].
Here, rcol indicates a collision radius around each spacecraft.

The collision flag is set to 0 if all spacecraft co-orbits are free of the moon,
and spacecraft collisions, and is 1 otherwise.

3.9. Spacecraft Design

While in the planned architecture of IDEAS (in Figure 1), the spacecraft
designer module is programmed into the software, in the current work, we use a
seed spacecraft template with commercially available off-the-shelf small space-
craft subsystems. The composition of the seed spacecraft dry mass used is
presented in Appendix A.

Wet mass. To ensure that the spacecraft in the swarm is capable of the two ma-
neuvers: orbit insertion, and orientation change, the seed spacecraft is allotted
fuel enough to perform a total velocity change ∆vnet given by

∆vnet = 1.3 (∆vOI,max + max (∆vOC,i)) (29)

The factor 1.3 is used as a 30 % margin to account for correction maneuvers
due to unmodeled dynamics (Vallado, 2013; Scheeres, 2016). The fuel mass of
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the seed spacecraft and its wet mass at launch is noted from the rocket equation
(Vallado, 2013).

Cost Estimation.

Seed Spacecraft Mission Using the wet mass of the seed spacecraft, we
estimate the seed spacecraft mission cost using empirical cost models. Specif-
ically, we use the small satellite cost model (SSCM) to estimate the bus and
mission operation cost (Mahr, Tu, and Gupta, 2016), and the NASA instrument
cost model (NICM) to estimate the cost of the camera (Habib-Agahi, Ball, and
Fox, 2009). The models used in the current work, estimate the cost in United
States Dollar currency, in the fiscal year 2010 (FY$10), and is converted to mil-
lions of launch year dollars (LY$M) using its launch year inflation factor (Wertz,
Everett, and Puschell, 2011). Using the SSCM and NICM models we estimate
the total mission cost TM1, and standard error SEM1 associated with one seed
spacecraft.

Launch. The launch cost is estimated using a database of launch providers
presented in Wertz, Everett, and Puschell, 2011. Using the database, we note the
lowest launch cost LC1 and the corresponding standard error SEL1 of a single
seed spacecraft. It should be noted that the SSCM, and the launch cost models
used in the current work estimate costs of Earth-based missions. However, we
use the multiplicative interplanetary factor from the QuickCost model (Wertz,
Everett, and Puschell, 2011) to estimate the cost for the interplanetary mission.

Swarm Mission. Since all the spacecraft are assumed to have the same seed
spacecraft design, the total space segment cost of the swarm mission and its
standard error are expressed as (Wertz, Everett, and Puschell, 2011)

TCS = TM1 ×N
(1 + lnS

ln 2 )
Sw + (NSw × LC1) (30)

SES =
√
NSw

√
SEM1

2 + SEL1
2 (31)

Where S is a learning curve factor from designing identical spacecraft. It is
acknowledged here that the accuracy of the cost models is quite limited given
that the models can be outdated by the rapid advancement in spacecraft tech-
nology (Weston, Miller, Ingersoll, et al., 2018). However, the costs noted here
can still be useful in the early mission design phase as a crude baseline estimate.

4. Design Optimization

In this section, we formulate the MINLP problems corresponding to the
optimal trajectory and swarm design modules in case of the two swarm missions.
For simplicity, we use the same trajectory design problem for both missions.
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Trajectory Design. We use the Automated Trajectory Designer module to mini-
mize the objective function JTr = ∆vOI,max. We place upper bound constraints
on C3,E , TF , v∞,2, and a lower bound constraint on hp,min which ensures that
the spacecraft will not collide with the central planet. Additionally, we eliminate
impractical solutions through linear constraints that enforce the launch epoch
DL occurs before the arrival epoch DA, and the number of spacecraft orbits q is
greater than the number of moon’s orbits p. This is to ensure that the orbits of
the spacecraft have a smaller semi-major axis than that of the target moon. The
trajectory design optimization problem for both missions is therefore presented
as 32.

min JTr = ∆vOI,max

s.t. C3,E − C3,max,R ≤ 0

TF − TFmax,R ≤ 0

v∞,2 − v∞,2,max,R ≤ 0

hp,min,R − (hp,min) ≤ 0

DL − DA ≤ 0

p − q ≤ 0

(32)

The trajectory design decision vector is shown in Figure 7. All design vari-
ables of the decision vector are bounded by user input values. The epochs
DL, and DA are formatted in the Julian time format and are used to note
the positions of the Earth and the target planet using an analytical planetary
ephemeris model (Vallado, 2013). The Lambert problem on the DL and DA

epochs is solved using the Gooding’s algorithm (Gooding, 1990).

Figure 7: Design variables of the trajectory design problem, and their corresponding ranges.

4.1. Swarm Design

We use the Automated Swarm Designer module to design swarms that can
meet the coverage, collision, and trajectory performance requirements with a
minimum number of spacecraft. The design problems specific to each problem
is expressed as follows:

Global Surface Mapping. In the global surface mapping application, we min-
imize the objective function JSw,map = NSw,map such that the cumulative
coverage of the swarm exceeds the coverage requirement Pmap,R without any
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collisions, with the maximum value of ∆vOC,i upper bounded by ∆vOC,max.
The problem can be expressed as

min JSw,map = NSw,map

s.t. Pmap,R − Pmap (tsim) ≤ 0

Collision flag ≤ 0

max(∆vOC,i) − ∆vOC,max ≤ 0

(33)

The decision vector of the global surface mapping problem is presented in
Figure 8.

Figure 8: Design variables of the global surface mapping swarm problem, and their corre-
sponding ranges.

RoI Observation. In the RoI observation mission, we minimize JSw,RoI =
NSw,RoI such that the cumulative RoI coverage exceeds the spatial requirement
PRoI,R, and temporal requirement tRoI,R, without collisions. The maximum
value of ∆vOC,i also assumed to be upper bounded by ∆vOC,max. The problem
is expressed as

min JSw,RoI = NSw,RoI

s.t. PRoI,R − PRoI (tsim) ≤ 0

tRoI,R − tRoI ≤ 0

Collision flag ≤ 0

max(∆vOC,i) − ∆vOC,max ≤ 0

(34)

The decision vector of the global surface mapping swarm design problem is
presented in Figure 9.

Figure 9: Design variables of the RoI observation swarm problem, and their corresponding
ranges.

The bounds on all design variables shown in Figures 8 and 9 are provided
through the user interface (illustrated in Figure 11). Since Equations 32, 33,
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and 34 contain nonlinear constraints, and both real and integer variables, we
classify them as MINLP problems. It should be noted that the swarm decision
vector allow us to compute the spacecraft locations at the encounter instant, as
described in Section 3.4. However at the start of simulations, we initialize the
location of the moon by offsetting the lowest encounter true anomaly by ∆f0,
ie,

f0 = min (fv,j) − ∆f0 (35)

The true anomalies of all spacecraft are then phased such that when the
moon reaches a true anomaly of fv,j , the spacecraft corresponding to this en-
counter reach a true anomaly of 180 deg (Vallado, 2013). The cumulative cover-
age is noted by propagating spacecraft, and moon motion for one orbital period
of the moon.

4.2. Optimization Procedure

The inbuilt genetic algorithm (GA) solver of MATLAB explicitly allows op-
timization of MINLP problems (Deep, Singh, Kansal, et al., 2009), which made
GA as the primary optimization solver. However, we also use the particle swarm
optimization (PSO) solver (Kennedy and Eberhart, 1995) to compare the feasi-
bility of the solutions and the performance of the optimizers. Both GA and PSO
solvers are population-based optimizers, which iteratively explores a population
of decision vectors (Rao, 2019). We use a stall stop criterion to identify a can-
didate optimal solution, where if the minimum value of the objective function is
held constant for a defined number of iterations, a decision vector corresponding
to this stalling minimum value is selected as the final solution. However, to avoid
selecting a local optimal solution, we run multiple trials of optimization using
each optimizer. The swarm design problems are computationally expensive: at
a given simulation time, the instantaneous coverage scales as O (N(FT )×Nm),
where N(FT ) is the number of faces in the shape model, and Nm is the number
of spacecraft participating in the mapping operations. As a means to overcome
the computational bottlenecks, parallel computation architecture was a critical
decision factor in selecting the two optimization solvers. A comparison of the
two optimization algorithms considered in the current work is presented in Ta-
ble 1. As seen here, the inbuilt PSO solver in MATLAB is not programmed to
handle constraints and integer variables. Therefore the optimization problems
in Equations 32, 33, and 34 were modified as real unconstrained optimization
problems described as follows.

Unconstrained Optimization. We use the penalty function method (Rao, 2019)
to convert the three optimization problems in Equations 32, 33, and 34 into un-
constrained optimization. We note that the optimization functions in Equations
32, 33, and 34 can be generalized as

min J

s.t. gm(x) ≤ 0 m = 1, 2, ...NC

(36)
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Table 1: Trade study showing a comparison of key features between the two optimization
algorithms considered in the current work, and the primary optimizer algorithm (GA).

Where J is the objective function, gm is the constraint m on the design, and
Nc is the total number of constraints, which are functions of the generalized de-
cision vector x. Then using the penalty method (Rao, 2019), the unconstrained
problem with will optimize the modified objective function J∗ given by

J∗ =


J if gm(x) ≤ 0 ∀ m

Jmax +
Nc∑

m=1
〈gm(x)〉 otherwise

(37)

Where Jmax is the maximum value of the objective function. The operation
〈y〉 outputs the argument y if y > 0, or 0 otherwise. The penalty function
in by Equation 37 is similar to the implicit penalty function of the GA solver
in MATLAB (Deb, 2000). However, the key difference is the definition of the
value of Jmax: the GA solver implicitly computes a population-based Jmax at
each iteration, while we use a fixed value of Jmax when solving the optimization
problem with the PSO solver.

Real-Valued Programming. When using the PSO solver, all integer decision vari-
ables: p, q, Nv, and Nv,j are rounded to their largest neighbouring integer.

5. Numerical Simulations

We now present numerical case studies to design the two visual mapping
missions to explore the Martian moon Deimos. We begin by describing the
model-specific parameters involved in defining the two swarm missions. The
performance of the optimizers, trajectory, swarm, and spacecraft designs are
then examined.

5.1. Mission and Simulation Parameters

Mission Definition. The coverage requirements and parameters in the definition
of both missions are presented as follows::
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Global Surface Mapping To map at least Pmap,R = 90 % surface of
Deimos with a maximum resolution of xR = 1 m using a minimum sized Class 2
swarm deployed on resonant co-orbits around Mars. The coverage requirements
of the global surface mapping mission are presented in Table 2.

Table 2: Mission definition parameters for the global surface mapping mission.

RoI Observation To observe at least PRoI,R = 90 % of a target RoI on
the surface of Deimos located at (ϕx,E , ϕy,E) = (45, 45) deg with an angular
spread of ΦE = 15 deg for at least tRoI,R = 20 mins and a maximum resolution
of at least xR = 1 m. The swarm designed here will use a minimum sized Class
2 swarm that is deployed on resonant co-orbits. The coverage requirements of
the RoI observation swarm mission are presented in Table 3.

Table 3: Mission definition parameters for the RoI observation mission.

The orbital ephemeris and constants to model the motion of Deimos (Murray
and Dermott, 1999; Giorgini, 2015), and the spacecraft are presented in Table 4.
The aerobraking altitude was selected based on the walk-in phase aerobraking
altitude of the Mars Odyssey mission (Smith Jr and Bell, 2005).

Table 4: Parameters used in the current work to model the motion of Deimos.
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Shape Model A 5400 triangular face shape model of Deimos (Thomas,
Yoder, Synnott, et al., 2000) is used for coverage estimation. The average, and
maximum radii noted from the shape model were 5.81 km, and 8.76 km respec-
tively. The computed surface area was 519 km2. The designed RoI spanned
a total of 58 triangular faces, amounting to a total surface area of 5.94 km2.
The triangulated shape model of Deimos and surface faces corresponding to the
RoI are presented in Figure 10. The heliocentric orbit of Mars is propagated
using an analytical Julian time-based model of Martian ephemeris (Vallado,
2013). The motion of Deimos, and spacecraft are propagated for a simulation
time tsim = 1.4 days in order to allow a complete orbit of Deimos. The fixed
simulation parameters for all simulations are presented in Table 5.

Figure 10: The shape model of Deimos showing the complete set of triangulated faces (left),
and the RoI faces (right)

Table 5: Common simulation parameters used for designing the two missions considered in
the current work.

The simulation architecture of the current work is presented in Figure 11. A
Comparison of Figure 11 with Figure 1 also indicates the current development
phase of the IDEAS software.

Flyby and Camera. The seed spacecraft in the current work is noted from Ap-
pendix A, and its required parameters are presented in Table 6. The red
spectrum is used as the baseline imaging wavelength (Wertz, Everett, and
Puschell, 2011). Using Equation 1, we note that the camera should be placed
at hmax = 114 km which is used for faC to evaluate coverage. The half-Fov of
the camera is noted as ηC = 2.84 deg from Equation 2.
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Figure 11: Architecture of the simulations in the current work, showing the sequential flow of
information across the different design modules.

Table 6: Spacecraft camera and flyby parameters used in the current work.

Optimizer Setup. To facilitate a fair comparison between the optimizer perfor-
mances, we use the same iteration search parameters for both GA and PSO
solvers as shown in Table 7. All simulations were run on a high-performance
computer cluster with a 2.3 GHz Intel Xeon Processor and were executed in
a parallelized architecture with 14 processor cores. Each design problem was
solved 5 times to verify if the final selected solution was a local optimal solution.
A stall limit of 100 iterations was used to select the final solution in each trial.
The solutions of the individual mission designs are described as follows:

5.2. Global Surface Mapping

The input parameters required for trajectory and swarm defination param-
eters used in the global surface mapping mission simulations are presented in
Table 8. The results of the trajectory and swarm optimization are described as
follows:

Trajectory Optimization. The variation of the least value of JTr noted from
all optimization trials of Equation 32 is presented in Figure 12. As seen here,
the PSO solver converged to its final solution in relatively fewer solutions. The
lowest value of ∆vOI,max, was noted as 0.664 km/s among all GA design simu-
lations, while it was 0.659 km/s among all PSO simulations.
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Table 7: Parameters used in the current work to configure the optimization solvers

Table 8: Trajectory and swarm definition parameters used in global surface mapping mission
design.

Swarm Optimization. The iterative variation of the least JSw,map among all
optimization trials of Equation 33 is presented in Figure 13. It can be seen
here, that the initial iterations show a large variation among all design trials, and
consequently have large standard deviations. This transience indicates iterations
that had no feasible solutions as at least one constraint was violated. In this
case, the solvers computed their penalties, as described in Equation 37, and
Deb, 2000. The performance metrics of all optimizer trials are presented in
Table 9. In swarm optimization trials, each iteration of the GA solver ran for
an average of about 39 s, while each PSO iteration recorded an average of 46 s.
Additionally, as seen from Figure 13, all GA trials converged to a minimum of
NSW,map = 3 spacecraft, While a lowest value of NSw = 4 spacecraft was noted
from all PSO trials. Due to the minimum size, the final solution selected was
noted from the GA trials and is analyzed in the following sections.
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Figure 12: Variation of minimum objective in the trajectory design of the global surface
mapping mission showing: the results of individual optimizer trials (left), and iteration-wise
distribution of the two solvers (right)

Figure 13: Variation of minimum objective in the swarm design of the global surface mapping
mission showing: the results of individual optimizer trials (left), and iteration-wise distribution
of the two solvers (right)

Optimal Trajectory. The decision vector of the selected optimal trajectory is
presented in Table 10. As seen here, the all design variables are shown to satisfy
the bounds noted in Table 8. The C3,E of the selected trajectory is 19.0 km2/s2,
and has a TF = 200 days. The selected trajectory is presented in Figure 14. The
contours presented in the porkchop plot (Vallado, 2013) in Figure 14, correspond
to the bounds defined in Table 8. At the end of the heliocentric cruise, the
computed excess velocity at arrival was v∞,2 = 2.47 km/s. As shown in Table
10, the selected optimal resonance is 4 : 9 resonance with hp,min = 327 km
from the surface of Mars. As described above, the design noted a value of
∆vOI,max = 0.664 km/s for its worst case orbit insertion maneuver.
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Table 9: Time statistics of optimization solvers in case of the global surface mapping swarm
mission.

Table 10: Decision vector of the optimal trajectory for the global surface mapping mission.

Optimal Swarm. The decision vector of the selected optimal swarm is presented
in Table 11. The designed swarm contains NSw,map = 3 spacecraft which en-
counter the moon in two different locations. The configuration of the co-orbits
of the spacecraft in the swarm along with the direction of the N V̄ −∞,2 is presented
in Figure 15. The locations of the two encounters on the orbit of Deimos are
shown here. The value of max(∆vOC,i) was noted as 0.95 km/s for the designed
swarm co-orbits.

Table 11: Decision vector of the optimal swarm for the global surface mapping mission.
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Figure 14: The selected optimal trajectory design with its mission parameters on Earth-Mars
porkchop plot (top), and the corresponding interplanetary trajectory (bottom)

Figure 15: Configuration of the resonant co-orbits in the designed global surface mapping
swarm.

Surface Coverage. The first encounter of the swarm, where 2 spacecraft en-
counter Deimos is shown in Figure 16, along with their instantaneous coverage.
The variation of cumulative and instantaneous coverage over the orbital period
of Deimos is presented in Figure 17. As seen here, at each encounter the instan-
taneous coverage is about 35 %. After the two encounters, we note a cumulative
surface coverage of 90.5 % thus meeting the coverage requirement of the mis-
sion. The orthographic projections of the shape model of Deimos showing the
cumulative coverage pattern after all encounters is shown in Figure 18.
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Figure 16: Encounter 1 of the swarm with Deimos, showing the spacecraft arrangement(left),
and their instantaneous surface coverage pattern (right).

Figure 17: Time evolution of surface coverage of Deimos noted from spacecraft encounters.

Spacecraft Design. The ∆vnet noted from substituting the ∆v of the two ma-
neuvers in Equation 29 was 2.1 km/s. The corresponding fuel mass required for
the spacecraft in Appendix A was noted using rocket equation (Vallado, 2013)
as 31 kg. The design parameters and seed spacecraft cost are presented in Table
12, where the costs are inflated to the launch year 2020 currency.

5.3. RoI Observation

The input parameters required for defining the trajectory and swarm in case
of the RoI observation mission are presented in Table 13. The results of the
trajectory and swarm optimization are as follows:

Trajectory Optimization. The variation of the least value of JTr noted from all
optimization trials of Equation 32 is presented in Figure 19. Since the optimiza-
tion problem is the same for the global surface mapping and RoI observation
missions, the optimizer performances are nearly identical.The lowest value of
∆vOI,max, was noted as 0.667 km/s across all GA design simulations, while it
was 0.659 km/s across all PSO simulations.
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Figure 18: Cumulative coverage generated after all encounters of the swarm.

Table 12: Design and cost parameters corresponding to the global surface mapping mission.

Figure 19: Variation of minimum objective in the trajectory design of the RoI observation
mission showing: the results of individual optimizer trials (left), and iteration-wise distribution
of the two solvers (right)

Swarm Optimization. The variation of the least JSw,map among all optimiza-
tion trials of Equation 34 is presented in Figure 20. The large initial transient
variations in the optimizer trials are also attributed to the lack of feasible de-
signs in the initial populations. The performance metrics of the swarm design
can be noted from Table 14. As seen here, the mean execution time was noted
to be nearly equal for both GA and PSO iterations. However, the PSO solver
trials identified the final solutions in fewer trials, leading to shorter execution
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Table 13: Trajectory and swarm definition parameters used in RoI Observation mission design.

times. Both solvers recorded a minimum value of NSw,RoI = 4 spacecraft.
The selected design corresponded to a 4 spacecraft swarm identified by the GA
solver with the least value of ∆vOI,max as 0.667 km/s, as the PSO trial with the
least ∆vOI,max, the swarm optimization solution converged to a 5 spacecraft
swarm.

Figure 20: Variation of minimum objective in the swarm design of the RoI observation mission
showing: the results of individual optimizer trials (left), and iteration-wise distribution of the
two solvers (right)

Optimal Trajectory. The decision vector of the selected optimal trajectory is
presented in Table 15. As seen here, the DL, and DA epochs are with in one
day of the epochs noted in Table 10. As a result, the trajectory is identical to
Figure 14. The C3,E , TF , and v∞,2 of the selected trajectory are 19.0 km2/s2,
200 days, and 2.47 km/s respectively. As shown in Table 15, the selected optimal
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Table 14: Time statistics of optimization solvers in case of the RoI observation swarm mission.

resonance is also a 4 : 9 resonance.

Table 15: Decision vector of the optimal trajectory for the RoI observation mission.

Optimal Swarm. The decision vector of the selected optimal swarm is presented
in Table 16. The designed swarm contains NSw,map = 4 spacecraft which
serially encounter Deimos at 4 separate locations listed in Table 16. The con-
figuration of the resonant co-orbits of the spacecraft in the swarm along with
the direction of the N V̄ −∞,2 is presented in Figure 21. The value of max(∆vOC,i)
was noted as 1.81 km/s for the designed swarm co-orbits.

Table 16: Decision vector of the optimal swarm for the global surface mapping mission.
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Figure 21: Configuration of the resonant co-orbits in the designed RoI observation swarm.

RoI Coverage. The first encounter in the swarm, where a single spacecraft ob-
serves the selected RoI is shown in Figure 22. The variation of spatial and
temporal RoI coverage over the simulation time span is presented in Figure 23.

Figure 22: Encounter 1 of the swarm with Deimos, showing a spacecraft location (left), and
its instantaneous RoI coverage pattern (right).

As seen here, after 4 encounters with Deimos, the spacecraft can achieve a
100 % surface coverage of the RoI while observing it for a total of 20.7 mins.
Furthermore, while coverage continuity (Wertz, Everett, and Puschell, 2011)
was not designed in the current work, all 4 encounters occur near the same true
anomaly of Deimos as noted from Table 16, which allows a nearly continuous
coverage as seen in Figure 17. The RoI surface covered after all spacecraft flybys
is presented in Figure 24, where all faces in the RoI are noted to be observed.

Spacecraft Design. The total ∆vnet noted from Equation 29 was 3.22 km/s for
The RoI. The fuel mass, and individual cost associated with the seed spacecraft
are presented in Table 12. The costs described here are also inflated in the
launch year 2020 currency as noted from Table 15.
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Figure 23: Time evolution of surface coverage of Deimos noted from spacecraft encounters.

Figure 24: Cumulative RoI coverage after all encounters of the swarm.

5.4. Swarm Mission Costs

The estimated space-segment costs for the two missions, noted from Equa-
tions 30 and 31 are presented in Table 18. The costs are inflated to their launch
year 2020. As noted here, the global surface mapping mission has an estimated
space segment cost of 53.4±2 LY$M if built from 3 seed spacecraft presented in
Table 12. The RoI observation mission has an estimated space segment cost of
75± 2.5 LY$M if built from 4 seed spacecraft presented in Table 17. However,
as mentioned above, while the accuracy of the cost estimation is limited, it can
help identify a ballpark estimate in the initial mission design phase.

5.5. Discussion

The results in the current work provide key insights into spacecraft swarms
applications and their mission design. The current work suggests that space-
craft flybys can overcome the spatial and temporal coverage limitations of single
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Table 17: Design and cost parameters corresponding to the RoI observation mission.

Table 18: Estimated space segment costs associated with the two swarm missions

spacecraft flybys, which is valuable for exploring small bodies such as planetary
moons. Second, the current work described a mission design software where
the interplanetary trajectory, swarm operations, and the seed spacecraft de-
signs are carried out in the same environment. The key advantage of such a
design tool over traditional tools that perform stand-alone design optimization
is that a common environment can identify incompatible solutions, and also
reduce the need for design duplication thus accelerating the mission design pro-
cess. However, we acknowledge that spacecraft swarm mission design is highly
interconnected. Even in the case of simplified mission architectures used in the
current work, the spacecraft payload influenced the trajectory, and encounter
design points for the swarms, which in turn influenced the fuel cost correspond-
ing to the orbit insertion maneuver. Therefore, a practical mission design tool
must allow for design iterations. Since the focus of the current work was on
the Automated Swarm Designer module, we presented a single execution of
the swarm design optimization, while showing its interaction with the trajec-
tory and spacecraft designs. Furthermore, this suggests that overall mission
requirements such as total cost, fuel, and weight requirements can be used in
the future development of IDEAS to allow design iterations using the Mission
Analyzer module. The key contributions of the current work to the existing
state-of-the-art in the field of space mission design research are summarized as
follows. First, the current work proposed novel spacecraft swarm missions to
study small, irregular planetary moons. The spacecraft are deployed on resonant
co-orbits that encounter the moon near their apoapsis. Next, we formulated the
trajectory and swarm design optimization of these co-orbits for missions with
space-based and time-based applications. The optimization problems are solved
using two evolutionary algorithms, which are programmed into the correspond-
ing design modules of IDEAS. Finally, we demonstrated the algorithms in the
current work through numerical simulations, while presenting the interactions
between different design modules in IDEAS.
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6. Conclusion

The current work presented mission design algorithms to explore irregular
planetary moons using flybys of spacecraft swarms. The swarms will be de-
ployed on co-orbits around the central planet, while periodically exploring the
moon at their apoapsis. The application of these co-orbits to space-based and
time-based visual mapping missions is presented. The algorithms presented are
programmed into the IDEAS software, which as an end-to-end tool for space-
craft swarm mission design. We began by defining the coverage requirements
for global surface mapping mission, as an example of a spatial coverage ap-
plication, and RoI observation mission for temporal coverage applications We
then presented the models of the two missions, where the swarm, trajectory,
and spacecraft design parameters were identified. The parameters were used
to formulate the swarm and trajectory design optimization problems, and their
solution methodology using different optimization solvers was discussed. We
then presented case studies where the two visual mapping swarm missions were
designed to explore the surface of Deimos while demonstrating the interactions
between the different design modules of IDEAS. While the current work pre-
sented applications of the Automated Swarm Designer module to design Class 2
swarm missions to explore planetary moons, few simplifying assumptions were
made in modeling the missions. To improve the fidelity of the design, future
work on IDEAS will focus on iterative mission design using the Mission Ana-
lyzer module, while exploring more swarm architectures. Additionally, future
work will also focus on building the spacecraft subsystem inventory and the
Automated Spacecraft Designer module. Finally, while in the current work we
only considered two-body dynamics, future work will focus on trajectory design
in high fidelity dynamical environments. This will be useful in planning addi-
tional correction maneuvers, which increases the accuracy of spacecraft mass,
and mission cost estimation. These augmentations will improve the quality of
solutions from IDEAS, thus providing a powerful tool to develop holistically
optimal missions for small body exploration.

Appendix A. Seed Spacecraft Dry Mass

In this section, we list the subsystems of the seed spacecraft used for fuel
mass and cost estimation. The subsystem list mentioned here was obtained
by surveying existing off-the-shelf small spacecraft hardware. However, it is
explicitly stated here that the feasibility of building such a seed spacecraft is
not considered in the current work. The subsystems are listed as follows:

Payload. The camera payload of the CubeSat mission Asteria (Pong, Lim,
M. W. Smith, et al., 2010) was used as the baseline of the seed spacecraft
camera model considered in the current work. The camera has an aperture
diameter of Dc = 8 cm, and is assumed to weigh a total of 0.57 kg, and has a
power consumption of 2 W. To compute payload cost, we conservatively assume
that the camera has a design life of 4 yrs.
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Attitude Control System. The XACT-50 module developed by Blue Canyon
Technologies, Inc., is selected as the baseline attitude determination and control
system (ADCS) for the seed spacecraft which has an estimated mass of 1.23 kg.

Communications. The IRIS V2.1 developed by the Jet Propulsion Laboratory
(Kobayashi, Holmes, Yarlagadda, et al., 2019) is assumed as the baseline com-
munication system for the seed spacecraft and has an estimated weight of 1.2 kg.

Command and Data Handling. the CubeSat Processor (CSP) by Space Micro
Inc. is assumed to be the command and data handling module (CDH) which
has an estimated mass of 60 g.

Power. The seed spacecraft is assumed to have a CubeSat grade Lithium bat-
tery manufactured by Pumpkin Space Inc., which weighs about 0.71 kg. In
addition, we assume that the spacecraft uses a power distribution board from
the same vendor which weighs a total of 0.155 kg, and MMA Hawk solar panels
with a mass of 0.558 kg. Therefore, the power system is estimated to weigh a
total of 1.42 kg.

Structure and Thermal. Since the seed spacecraft described here is assumed to
belong to small spacecraft class (Wertz, Everett, and Puschell, 2011), we con-
servatively assume a net supporting structural mass of 10 kg, and an additional
2 kg mass for thermal protection.

Propulsion. The MPS-120XL system from Aerojet Rocketdyne Holdings Inc is
assumed to be the baseline propulsion subsystem of the seed spacecraft. This
propulsion system has a dry mass of 2.4 kg. We assume that the fuel used is
hydrazine with a specific impulse of 220 s (Vallado, 2013). The fuel mass is
estimated such that the spacecraft can perform the worst case orbit insertion
and orientation change maneuvers as described by Equation 29. The resulting
mass distribution of the spacecraft is summarized in Table A.19.

Table A.19: Mass distribution of the seed spacecraft obtained by a collection of existing
off-the-shelf equipment.
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