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Abstract. Automation of mining and resource utilization processes on the Moon with teams of autonomous robots 
holds considerable promise for establishing a lunar base.  We present an Artificial Neural Tissue (ANT) architecture as 
a control system for autonomous multirobot tasks.  An Artificial Neural Tissue (ANT) approach requires much less 
human supervision and pre-programmed human expertise than previous techniques. Only a single global fitness 
function and a set of allowable basis behaviors need be specified.  An evolutionary (Darwinian) selection process is 
used to train controllers for the task at hand in simulation and is verified on hardware. This process results in the 
emergence of novel functionality through the task decomposition of mission goals.  ANT based controllers are shown 
to exhibit self-organization, employ stigmergy (communication mediated through the environment) and make use of 
templates (unlabeled environmental cues).  With lunar in-situ resource utilization (ISRU) efforts in mind, ANT 
controllers have been tested on a multirobot resource gathering task in which teams of robots with no explicit 
supervision can successfully avoid obstacles, explore terrain, locate resource material and collect it in a designated area 
by using a light beacon for reference and interpreting unlabeled perimeter markings. 
Keywords: ISRU, collective robotics, neural networks, evolutionary algorithms, developmental systems.  
PACS: 45.40.Ln, 84.35.+i, 07.05.Mh. 

INTRODUCTION  

It has been argued that mining and resource utilization can benefit from the autonomous operation of teams of robots 
on the lunar surface.  Indeed, robotic preparation for a human habitat on the Moon is very likely an imperative.  
Concerns for health and safety limit the productivity of human astronauts.  Teams of autonomous robots could work 
continuously in hazardous conditions, making them very appealing for lunar mining and in-situ resource utilization 
(ISRU) tasks.  One has only to observe the effectiveness of a colony of ants excavating tunnels or termites building 
towering cathedral mounds with internal heating and cooling shafts (Bristow and Holt, 1997) to see why approaches 
to such tasks in robotics are often biologically inspired and multiagent oriented (Melhuish, Welsby and Edwards 
1999). 

Although the teleoperation of lunar rovers is possible from Earth and has been demonstrated successfully with the 
Lunakhod 1 and 2 rover missions, operator fatigue is of concern (Miller and Machulis, 2005) especially when 
coordinating actions with teams of robots over extended missions.  In addition, these systems must be robust to 
communication interruptions and bandwidth and latency issues.  An alternative approach is the deployment of 
autonomous systems that require limited human control.  There currently exist two major approaches to developing 
autonomous control systems: human knowledge/model-based controllers and systems based on machine learning 
techniques. Human knowledge/model-based behaviour control strategies rely on human input in the form of ad-hoc 
control rules, task-specific assumptions, and human experience and knowledge.  In contrast, machine learning 
systems of the type examined here perform task decomposition through ‘emergent’ self-organized behavior. In lunar 
and planetary environments, task-specific assumptions may not always be valid in-situ and may require 
reassessment during a mission.  There is also a growing necessity for the development of generic teams of ‘utility’ 
robots that can facilitate in-situ resource utilization and perform specific tasks that may never have been envisioned 
during mission planning and modeling stages. 
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The approach outlined in this paper involves the application of a machine learning approach called the Artificial 
Neural Tissue framework (Thangavelautham and D’Eleuterio, 2005) to solve a multirobot resource gathering and 
berm formation task.  With minimal task-specific assumptions and limited supervision, ANT can produce controllers 
which exploit templates (unlabeled environmental cues), stigmergy (indirect communication mediated through the 
environment), and self-organization. Since little preprogrammed knowledge is given, ANT may discover novel 
solutions that would otherwise be overlooked by a human supervisor. 

ANT is particularly advantageous for multirobot tasks in which some global behavior must be achieved without a 
centralized controller. Even though each individual has no ‘blueprint’ of the overall task and must operate with only 
local sensor data, an ensemble of robots is able to complete a mission requiring a global consensus. The desired 
global behavior ‘emerges’ from the local interactions of individual robots. Designing controllers of this sort by hand 
can be very difficult because the process by which local behaviors work to form a global consensus can be difficult 
to understand and even counterintuitive.  Previous work in the field such as (Mataric et al., 1995; Parker, Zhang and 
Kube, 2003; Wilson et al., 2004; Werfel, Yam and Nagpal, 2005) rely on task-specific human knowledge to develop 
simple ‘if-then’ rules or equivalent coordination behaviors to solve multirobot tasks.  In contrast, the approach 
outlined here is a generic framework that could be applied to any number of non-Markovian robotic control tasks, 
and is not specific to the collective-robotics domain.  It has already been shown that ANT can produce emergent 
controller solutions for a multirobot tiling pattern formation task, a single-robot phototaxis task and an unlabeled 
sign following task (Thangavelautham and D’Eleuterio, 2005).  In this paper, we compare the training performance 
of fixed-topology versus ANT-based neural network controllers for a multirobot resource gathering task.  

BACKGROUND  

Collective robotic tasks typically employ some of the same mechanisms used by social insects.  These include the 
use of templates, stigmergy, and self-organization. Templates are environmental features perceptible to the 
individuals within the collective (Bonabeau, Dorigo and Thereaulaz, 1999). Stigmergy is a form of indirect 
communication mediated through the environment (Grasse, 1959). Self-organization describes how local or 
microscopic behaviors give rise to a macroscopic structure in systems which are not in equilibrium (Bonabeau et al., 
1997). These methods have been applied to various collective robotics tasks. However, most existing techniques 
have relied on prior task-specific knowledge to create stochastic or rule-based controllers. Our approach is 
evolutionary in nature and ‘learns’ to take advantage of these techniques without explicit human input. 

In insect colonies, templates may be a natural phenomenon, or they may be created by the colonies themselves. They 
may include temperature, humidity, chemical, or light gradients. In robotic applications, template-based approaches 
include the use of light fields to direct the creation of circular (Stewart and Russell, 2003) and linear walls 
(Wawerla, Sukhame and Mataric, 2002) and planar annulus structures (Wilson et al., 2004). Stewart and Russell 
(2004) have used spatiotemporal varying templates, in which one member of the robot collective varies the template 
thereby altering the global consensus that results to construct a ‘loose wall’ structure.  The use of active rather than 
passive construction objects, although not biologically plausible, has also been applied to building user-defined 
colored block structures (Werfel, Yam and Nagpal, 2005). 

Stigmergy is an implicit form of communication and involves individuals modifying the environment and in turn 
alters the perception and behavior of other individuals that encounter the environmental changes.  Stigmergy has 
been used extensively in collective-robotic construction tasks, including blind bull dozing (Parker, Zhang and Kube, 
2003), box pushing (Mataric et al., 1995),  heap formation (Beckers, Holland and Deneubourg, 1994) and tiling 
pattern formation (Thangavelautham, Barfoot and D'Eleuterio,  2003). 

Self-organization describes the process by which a global consensus emerges from a set of local behaviors 
(Bonabeau et al., 1997). With self-organized systems, no individual possesses a knowledge of the overall 
environment or the end goal. Individuals merely react to local sensor data. A global solution arises from the 
interactions of a colony of individuals. Our approach in this paper uses a Darwinian selection process to evolve 
robotic controllers for performing a desired task. The evolved controllers make use of templates and stigmergy in 
order to achieve the level of self-organization necessary to achieve the global goals. 

The collective robotic works cited earlier excluding (Thangavelautham, Barfoot and D'Eleuterio, 2003) rely on 
either user-defined, deterministic ‘if-then’ rules, or on stochastic behaviors. In both cases, designing these 
controllers is an ad-hoc procedure that relies on the experimenter’s knowledge of the task at hand.  However, the 
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global effect of local interactions is often difficult to determine, and the specific interactions required to achieve a 
global consensus may even be counterintuitive. Thus, at this stage of the field’s development at least, designing 
successful controllers by hand is a process of trial and error. 

One approach to reducing the amount of trial and error done by hand is to encode controllers as behavioral look-up 
tables, and allow a genetic algorithm to evolve the values in the table.  This approach was demonstrated for 
collective heap formation (Barfoot and D’Eleuterio, 1999) and 2× 2 tiling pattern formation tasks (Thangavelautham 
Barfoot and D'Eleuterio, 2003).  The limitations to this approach are poor sensor scalability and lack of 
generalization. An increased number of sensors leads to a combinatorial explosion in the size of the look-up table, 
resulting in premature search stagnation (the ‘bootstrap’ problem).  As an action must be encoded for each 
combination of sensor inputs, the controller does not generalize from one state to another one with similar inputs.  
Neural network controllers can often overcome this second limitation by effectively implementing a compressed 
representation of the problem space.  A neural network controller was able to solve the harder 3 × 3 tiling formation 
task (Thangavelautham and D’Eleuterio, 2004).  Other fixed-topology neural controller approaches have been used 
to build walls, corridors and briar patches (Crabbe and Dyer, 1999). 

Fixed-topology neural networks present an additional problem: The size and structure of the network must be fixed 
ahead of time. Inappropriate choices may lead to a network that is unable to solve the problem.  The ANT 
framework is able to overcome this problem.  This variable-length neurocontroller model allows for the 
generalization of sensory input, for improved scalability over fixed-network topologies, and for both stochastic and 
deterministic arbitration schemes.  For the 3 × 3 tiling pattern formation (collective task) (Thangavelautham and 
D’Eleuterio, 2005) and for the resource gathering tasks presented here, ANT shows improved performance over 
fixed-topology neural networks. 

ARTIFICIAL NEURAL TISSUE MODEL  

The ANT architecture (Figure 1) presented in this paper consists of a developmental program, encoded in the 
‘genome,’ that constructs a three-dimensional neural tissue and associated regulatory functionality.   The tissue 
consists of two types of neural units, decision neurons and motor-control neurons, or simply motor neurons.  
Regulation is performed by the decision neurons that dynamically exhibit or inhibit motor-control neurons within 
the tissue based on a coarse-coding framework.  Let us discuss the computational mechanism of the tissue first and 
then outline the process by which the tissue is created. 

Computation  

The motor neurons is assumed be spheres arranged in a regular rectangular lattice in which the neuron Nλ  occupies 

the position 3( , , )l m nλ = ∈ ø  (sphere centered within cube).  The state s  of the neuron is binary, i.e., 

{0,1}s Sλ ∈ = . Each neuron Nλ  nominally receives inputs from neurons N6  where ( )∈⇑6 8 , the nominal input 

set. Here it shall be assumed that these nominal inputs are the 3 3×  neurons centered one layer below Nλ ; in other 

terms, ( ) {( , , ) | 1, , 1; 1, , 1; 1}i j k i l l l j m m m k n⇑ = = − + = − + = −8 . (As will be explained presently, however, it 
shall not be assumed that all the neurons are active all the time.) The activation function of each neuron is taken 
from among four possible threshold functions of the weighted input σ :  
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with the proviso that 0σ =  if the numerator and denominator are zero. Also, w ∈68  is the weight connecting N6  

to N8 . These threshold functions maybe summarized in a single analytical expression as: 

  
1 2 2 1 2 2(1 )[(1 ) ] [(1 ) ]down up ditch moundk k k k k kψ ψ ψ ψ ψ= − − + + − + , (3) 

where 1k  and 2k  can take on the value 0 or 1. The activation function is thus encoded in the genome by 1 2,k k  and 

the threshold parameters 1 2,θ θ ∈ . 

 
(a) Synaptic Connections. (b) Coarse Coding. 

FIGURE 1. (a) Synaptic Connections between Motor Neurons from Layer l+1 to l. (b) Activated Decision Neurons Diffuse  
Neurotransmitter Concentration Field Resulting in Activation of Motor Control Neurons with Highest Activation Concentration. 

It may appear that downψ  and upψ  are mutually redundant as one type can be obtained from the other by reversing 
the signs on all the weights. However, retaining both increases diversity in the evolution because a single 2-bit 
‘gene’ is required to encode the threshold function and only one mutation suffices to convert downψ  into upψ  or  vice 
versa as opposed to changing the sign of every weight. The sensor data are represented by the activation of the 
sensor input neurons ,  1 ,

i
N i m= …
"  summarized as

1 2
{ , }

m
A s s s= …" " " . Similarly, the output of the network is 

represented by the activation of the output neurons 
 

,  1 ,
j
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 1  2  

{ , }b
n

s s sΩ = …
T T T , 

where 1k b= …  specifies the output behavior.  Each output neurons commands one behavior of the agent. (In the 
case of a robot, a typical behavior may be to move forward a given distance. This may involve the coordinated 
action of several actuators. Alternatively, the behavior may be more primitive such as augmenting the current of a 
given actuator.). If 1k

j
s =
T

, output neuron Tj votes to activate behavior k; if 0k
j

s =
T

, it does not.  Since 

multiple neurons can have access to a behavior pathway, an arbitration scheme is imposed to ensure the controller is 
deterministic where: 

                                                                        
1, 1

( )
k

k k
j

n

s j
p k

n

s

◊ = =

= ∑ T
,                                (4) 

and nk is the number of output neurons connected to output behavior k resulting in  behavior k  being activated if 
p(k) ≥ 0.5. As implied by the set notation of Ω , the outputs are not ordered. In this embodiment, the order of 
activation is selected randomly. We are primarily interested here in the statistical characteristics of relatively large 
populations but such an approach would likely not be desirable in a practical robotic application. However, this can 
be remedied by simply assigning a sequence a priori to the activations (as shown in Table 1 for the task). 

The output neurons can be redundant; that is, more than one neuron can command the same behavior, in which case 
for a given time step one behavior may be ‘emphasized’ by being voted multiple times. Neurons may also cancel out 
each other such one output commanding a forward step while another commands a backward step. Finally, not all 
behaviors need be encoded in the neural tissue. This is left to the evolutionary process. 
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The Decision Neuron  
The coarse-coding nature of the artificial neural tissue is provided by the decision neurons. Decision neurons can be 
thought of as rectangular structures occupying nodes in the lattice as established by the evolutionary process (Figure 
1). The effect of these neurons is to excite or inhibit the motor control neurons (shown as spheres). Motivated as we 
are to seek biological support for ANT, we may look to the phenomenon of chemical communication among 
neurons. In addition to communicating electrically along axons, some neurons release chemicals that are read by 
other neurons, in essence serving as a ‘wireless’ communication system to complement the ‘wired’ one. 
 
In ANT, the state of a decision neuron T:  located at :  is binary and determined by one of the same activation 

functions (2) that also serve the motor control neurons. The inputs to T:  are all the input sensor neurons N" ,  i.e., 

1
( )

m
s s sψ= …

" ": :  where v s sσ = ∑ ∑:
" " "" ":  and v:

"
 are the weights. The decision neuron is dormant if 

0s =
:

 and releases a virtual chemical of uniform concentration c:  over a prescribed field of influence if 1s =: . A 
motor control neuron will be excited into operation if the total concentration of the chemical from all influential 
decision neurons reaches a predefined critical level. Only those neurons that are so activated will establish the 
functioning network for the given set of input sensor data. Owing to the coarse-coding effect, the sums used in the 
weighted input of (1) are over only the set ( )  ( )⇑ ⊆ ⇑8 8  of active inputs to N8 . Likewise the output of ANT is in 

generalΩ ⊆ Ω . The decision neuron’s field of influence is taken to be a rectangular box extending 
 ,  1, 2, 3,rd r± =:  from :  is the three perpendicular directions. These three dimensions along with :  and c: , the 

concentration level of the virtual chemical emitted by T:  are encoded in the genome. 

Evolution and Development  

A population of ANT controllers is evolved in an artificial Darwinian manner (Holland, 1975).  The ‘genome’ for a 
controller contains a ‘gene’ for each cell with a specifier D (see Figure 3) that is used to distinguish the functionality 
(between motor control, decision and tissue).  A constructor protein (an autonomous program) interprets the 
information encoded in the gene and translates this into a cell descriptor protein (see Figure 2).  The gene 
‘activation’ parameter is a binary flag resident in all the cell genes and is used to either express or repress the 
contents of gene.  When repressed, a descriptor protein of the gene content is not created.  Otherwise, the constructor 
protein ‘grows’ the tissue in which each cell is located relative to a specified seed-parent address.  A cell death flag 
determines whether the cell commits suicide after being grown.  Once again, this feature in the genome helps in the 
evolutionary process for a cell, by committing suicide, still occupies a volume in the lattice although it is dormant.  
In otherwise retaining its characteristics, evolution can decide to reinstate the cell by merely toggling a bit.   
 

 
FIGURE 2. Genes Are ‘Read’ by Constructor Protein that Transcribe the Information into a Descriptor Protein which Is Used to 
Construct a Cell. When a Gene Is Repressed, the Constructor Protein Is Prevented from Reading the Gene Contents. 
 
In turn mutation (manipulation of gene parameters with uniform random distribution) to the growth program results 
in new cells being formed through cell division. The rate at which mutation occurs to a growth program is also 
specified for each tissue and is dependent on the neuron replication probability parameter. Cell division requires a 
parent cell (selected with highest replication probability relative to the rest of the cells within the tissue) and 
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involves copying m% of the original cell contents to a daughter cell (where m is determined based on uniform 
random distribution), with the remaining cell contents initialized with a uniform random distribution. The cell type 
of each new cell is determined based on the ratio of motor control to decision neurons specified in the tissue gene.  
The new cell can be located in one of 6 neighboring locations (top, bottom, north, south, east, west) sharing a 
common side with the parent and is not occupied by another cell.  

 
(a) Motor Control Neuron Gene. 

 
(b) Decision Neuron Gene. 

 
(c) Tissue Gene. 

FIGURE 3.  Gene Descriptions for Elements within the ANT Genome. 

SIMULATION EXPERIMENT SETUP  

The resource gathering and berm formation task is intended to demonstrate the feasibility of team of robots in 
gathering surface resources (such as titanium oxide or helium-3 on the lunar surface) into a designated dumping 
area, where the resources will be further processed. It could be argued that emergent task decomposition may be 
necessary to accomplish the task given a global fitness function.  A layout of the simulation experiment area used 
for training is shown in Figure 4.  The experiment region or workspace is modeled as a two-dimensional grid 
environment with the size of each square in the grid being just able to accommodate one robot.  For this task, the 
controller need to accomplish a number of subtasks including gather resource material, avoiding workspace 
perimeter, avoiding colliding into other robots, and collecting resources into a berm at the designated location.  (In 
the present experiment, a berm is simply a mound of the resource material.)   The berm location has perimeter 
markings on the floor and a light beacon mounted nearby.  The two colors on the border are intended to allow the 
controller to determine whether the robot is inside or outside the berm location.  Though solutions can be found 
without the light beacon, its presence improves the efficiency of the solutions found as it allows the robots to track 
the target location from a distance instead of randomly searching the workspace for the perimeter.  The global 
fitness function for the task measures the amount of resource material accumulated in the designated location within 
a finite number of time steps; in this case, T = 300 timesteps.  

 

FIGURE 4. 2-D Grid World Model of the Experiment Chamber. 
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TABLE 1. Sensor Inputs. 
Variables Function States 
V1...V4 Resource Detection Resource, No Resource 
C1...C4 Colour Template Detection Blue, Red, Orange, Floor 
S1, S2 Front/Rear Obstacle Detection Obstacle, No Obstacle 
LP1 Light Position Left, Right, Center, Not Visible 
LD1 Light Range 0-10 (distance to light) 

 
TABLE 2. Basis Behaviours. 
Order Behaviour Description 
1 Dump Resource Move one grid square backward and turn 90 o left, when resource inside shovel. 
2 Move Forwards Move one grid square forwards. 
3 Turn Right Turn 90 o right. 
4 Turn Left Turn 90 o left. 
5, 7, 9, 11 Bit Set Set memory bit i to 1, i=1…4 
6, 8, 10, 12 Bit Clear Set memory bit i to 0, i=1…4 

 

 
(a) Resources. (b) Color Template. (c) Obstacle Avoidance. 

FIGURE 5. Robot Input Sensor Mapping, Simulation Model Shown Inset. 

For this task, inputs to the ANT controller are shown in Table 1 (right).  The robots have access to a pair of 
webcams and a set of sonar sensors.   All raw input data are discretized.  The sonar sensors are used to determine the 
values of S1 and S2.  One of the cameras is used to detect resource material (green packing peanuts) and colored 
floor templates (see Figure 5).  The other camera is used to track the light beacon.  In order to identify peanuts and 
colored floor templates, a naïve Bayes classifier is used to perform colour recognition (Hastie, Tibshirani and 
Friedman, 2001).  Simple feature-detection heuristics are used to determine the values of V1. . .V4 and C1. . .C4 based 
on the grid locations shown.  For detection of the light beacon, the shutter speed and gain are adjusted to ensure that 
the light source is visible while other background features are underexposed.  The position of the light LP1 is 
determined based on the pan angle of the camera.  The distance to the light source LD1 is estimated based on its size 
in the image.  The robots also have access to four memory bits, which can be manipulated using some of the basis 
behaviours.  Table 1 (left) lists the basis behaviors the robot can perform.  These behaviors are activated based on an 
arbitration scheme mentioned previously and all occur within a single timestep.  Darwinian selection is performed 
based on the fitness value of each controller averaged over 100 different initial conditions.   The Evolutionary 
Algorithm (EA) population size for the experiments is P = 100, crossover probability pc = 0.7, mutation probability 
pm = 0.025 and tournament size of 0.06 P (for Tournament selection). 

RESULTS AND DISCUSSION  

Figure 6 shows the fitness (population best) of the overall system evaluated at each generation of the artificial 
evolutionary process.  The performance of a fixed-topology, fully connected network with 12 hidden and output 
neurons is also shown in Figure 7.   While this is not intended as some benchmark network, in a fixed-topology 
network there tends to be more ‘active’ synaptic connections present (since all neurons are active) and thus it takes 
longer for each neuron to tune these connections for all sensory inputs. In an ANT-based architecture, the network is 
dynamically formed based on set of sensory input facilitating smaller network specialized for specific sensory 
inputs.  The average fitness comparison with ANT controllers shows that the performance increases with the number 
of robots.  With an increased number of robots, each robot has a smaller area to cover in trying to gather and dump 
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resources.  Some of the emergent solutions indicate that the individual robots all figure out how to dump nearby 
resources into the designated berm area; however, not all robots deliver resource all the way to the dumping area 
every time (Figure 8).  Instead, the robots learn to pass the resource material from one individual to another during 
an encounter; a ‘bucket brigade’ (Figure 8 (d)–(e)). This technique improves the overall efficiency of system as less 
time is spent traveling to and from the dumping area.  Since the robots cannot explicitly communicate with one 
another, these encounters happen by chance rather than through preplanning.  As with other multiagent systems, 
communication between robots occurs through manipulation of the environment in the form of stigmergy.   

While the robot controllers can detect and home in on a light beacon, this source of navigation is not always used.  
Although not necessary, the light beacon helps in navigation by allowing the robots to locate dumping area.   It is 
surprising that the fitness of the system is not substantially affected by the light source turned off.  However, when 
the light source is on, the controllers do make use of it to home in on the dumping area even though this does not 
appear to provide any noticeable performance advantages (Figure 7).  Once the robots are facing away from the light 
source, the light beacon sensor is out of view and hence in the ‘Not Visible’ state.  

 

FIGURE 6. Evolutionary Performance Comparison of ANT Based Solutions for between 1 and 5 Robots. 

 

FIGURE 7. Evolutionary Performance Comparison with 4 Robots for Fixed Topology Case and Light Beacon Off. 
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                (a) Timestep 0.                       (b) Timestep 17.           (c) Robot 1  (0-557 Timesteps). 
 

 
 

               (d) Timestep 271.                    (e) Timestep 272.     (f) All Robots  (0-557 Timesteps). 
 

FIGURE 8. (a)-(f) Snapshots and Robot Trajectories of a Task Simulation (4 robots). 

 
 

 

(a) Frame 1. (b) Frame 2. (c) Frame 3. (d) Frame 4. 

FIGURE 9. Movie frames of Argo Rover with ANT Controller Homing onto Designated Area and Dumping Resources. 

 

FIGURE 10. System Activity for the Resource Gathering Task (4 Robots, Population Best Solution).  
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This particular set-up would necessitate reliance on other environment cues to find the dumping area. For example, 
the controllers are found to follow the blue-shaded boundary until they approach the dumping area, at which time 
the robot can see and use the light source (Figure 8 (c),(f)).  This is in part due to the dumping area being next to the 
boundary region in our experiments.  Thus, where possible, the controllers perform ‘sensor fusion,’ making use of 
data from multiple sensors to perform navigation to and from the dumping area. Some of the evolved behaviours 
particularly, ‘dump resources’, which depends on both visual cues and the light beacon has been verified on 
hardware (see Figure 9).  In these experiments, the robots have no information about how much time is available; 
hence, the system cannot greedily accumulate resource materials without periodically dumping the material at the 
designated area. This explains why we see a steady increase in the amount of resource material gathered over time 
(see Figure 10).  Fitness increases as more robots are added.  With fewer robots moving around based on a 
deterministic rule set, there is an increased possibility of being unable to visit the entire workspace within a finite 
number of time steps since the robots settle into cyclical loops once there is no more resource material along their 
trajectories (Figure 8 (f)).  With an increased number of robots, these trajectories tend to become chaotic because the 
trajectories overlap and result in robot-robot encounters, which results in the robots turning away to avoid collision.  
These changes in trajectory enable the robots to cover an area that may not have been previously visited, thus 
improving the overall system performance.  However, the simulations indicate that the point of diminishing returns 
is eventually reached.  Beyond this point, additional robots have a minimal effect on the performance of the solution.  

CONCLUSIONS 

A developmental Artificial Neural Tissue (ANT) architecture has been successfully applied to a multirobot resource 
gathering and berm formation task in support of lunar in-situ resource utilization efforts.  ANT controllers require 
only a global fitness function that merely measures the performance of the controller for a given task and a generic 
set of basis behaviors.  Since little preprogrammed knowledge is given, an ANT architecture may permit novel 
solutions that might otherwise be overlooked by a human supervisor.  ANT controllers are shown to exploit a 
number of mechanisms known to be used in multiagent systems in unsupervised manner, including environmental 
templates, stigmergy and self-organization.  By exploiting these mechanisms the controllers exhibited novel 
functionality including use of ‘bucket brigades’ and various homing behaviors using sensor fusion.    
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