
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/337696040

Multidisciplinary Design and Control Optimization of a Spherical Robot for

Planetary Exploration

Article  in  Collection of Technical Papers - AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference · December 2019

CITATIONS

0
READS

92

2 authors:

Some of the authors of this publication are also working on these related projects:

Inflatable Antenna for CubeSats View project

Robotics and Neural Networks View project

Himangshu Kalita

The University of Arizona

53 PUBLICATIONS   167 CITATIONS   

SEE PROFILE

Jekan Thangavelautham

The University of Arizona

205 PUBLICATIONS   834 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Jekan Thangavelautham on 03 December 2019.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/337696040_Multidisciplinary_Design_and_Control_Optimization_of_a_Spherical_Robot_for_Planetary_Exploration?enrichId=rgreq-94fe1f5771153bfe35ab15981dcf70f4-XXX&enrichSource=Y292ZXJQYWdlOzMzNzY5NjA0MDtBUzo4MzE4Mzc2MDU3NDg3MzdAMTU3NTMzNjk0ODk1NA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/337696040_Multidisciplinary_Design_and_Control_Optimization_of_a_Spherical_Robot_for_Planetary_Exploration?enrichId=rgreq-94fe1f5771153bfe35ab15981dcf70f4-XXX&enrichSource=Y292ZXJQYWdlOzMzNzY5NjA0MDtBUzo4MzE4Mzc2MDU3NDg3MzdAMTU3NTMzNjk0ODk1NA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Inflatable-Antenna-for-CubeSats?enrichId=rgreq-94fe1f5771153bfe35ab15981dcf70f4-XXX&enrichSource=Y292ZXJQYWdlOzMzNzY5NjA0MDtBUzo4MzE4Mzc2MDU3NDg3MzdAMTU3NTMzNjk0ODk1NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Robotics-and-Neural-Networks?enrichId=rgreq-94fe1f5771153bfe35ab15981dcf70f4-XXX&enrichSource=Y292ZXJQYWdlOzMzNzY5NjA0MDtBUzo4MzE4Mzc2MDU3NDg3MzdAMTU3NTMzNjk0ODk1NA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-94fe1f5771153bfe35ab15981dcf70f4-XXX&enrichSource=Y292ZXJQYWdlOzMzNzY5NjA0MDtBUzo4MzE4Mzc2MDU3NDg3MzdAMTU3NTMzNjk0ODk1NA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Himangshu_Kalita?enrichId=rgreq-94fe1f5771153bfe35ab15981dcf70f4-XXX&enrichSource=Y292ZXJQYWdlOzMzNzY5NjA0MDtBUzo4MzE4Mzc2MDU3NDg3MzdAMTU3NTMzNjk0ODk1NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Himangshu_Kalita?enrichId=rgreq-94fe1f5771153bfe35ab15981dcf70f4-XXX&enrichSource=Y292ZXJQYWdlOzMzNzY5NjA0MDtBUzo4MzE4Mzc2MDU3NDg3MzdAMTU3NTMzNjk0ODk1NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_University_of_Arizona?enrichId=rgreq-94fe1f5771153bfe35ab15981dcf70f4-XXX&enrichSource=Y292ZXJQYWdlOzMzNzY5NjA0MDtBUzo4MzE4Mzc2MDU3NDg3MzdAMTU3NTMzNjk0ODk1NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Himangshu_Kalita?enrichId=rgreq-94fe1f5771153bfe35ab15981dcf70f4-XXX&enrichSource=Y292ZXJQYWdlOzMzNzY5NjA0MDtBUzo4MzE4Mzc2MDU3NDg3MzdAMTU3NTMzNjk0ODk1NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jekan_Thangavelautham?enrichId=rgreq-94fe1f5771153bfe35ab15981dcf70f4-XXX&enrichSource=Y292ZXJQYWdlOzMzNzY5NjA0MDtBUzo4MzE4Mzc2MDU3NDg3MzdAMTU3NTMzNjk0ODk1NA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jekan_Thangavelautham?enrichId=rgreq-94fe1f5771153bfe35ab15981dcf70f4-XXX&enrichSource=Y292ZXJQYWdlOzMzNzY5NjA0MDtBUzo4MzE4Mzc2MDU3NDg3MzdAMTU3NTMzNjk0ODk1NA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/The_University_of_Arizona?enrichId=rgreq-94fe1f5771153bfe35ab15981dcf70f4-XXX&enrichSource=Y292ZXJQYWdlOzMzNzY5NjA0MDtBUzo4MzE4Mzc2MDU3NDg3MzdAMTU3NTMzNjk0ODk1NA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jekan_Thangavelautham?enrichId=rgreq-94fe1f5771153bfe35ab15981dcf70f4-XXX&enrichSource=Y292ZXJQYWdlOzMzNzY5NjA0MDtBUzo4MzE4Mzc2MDU3NDg3MzdAMTU3NTMzNjk0ODk1NA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Jekan_Thangavelautham?enrichId=rgreq-94fe1f5771153bfe35ab15981dcf70f4-XXX&enrichSource=Y292ZXJQYWdlOzMzNzY5NjA0MDtBUzo4MzE4Mzc2MDU3NDg3MzdAMTU3NTMzNjk0ODk1NA%3D%3D&el=1_x_10&_esc=publicationCoverPdf


1 
 

Multidisciplinary Design and Control 
Optimization of a Spherical Robot for 

Planetary Exploration 

Himangshu Kalita1  and Jekan Thangavelautham2 
Space and Terrestrial Robotic Exploration (SpaceTREx) Laboratory,                                       

Aerospace and Mechanical Engineering Department, University of Arizona, 85721, USA 

Missions targeting extreme and rugged environments such as caves, canyons, cliffs and 
crater rims of the Moon, Mars and icy moons are the next frontiers in solar system 
exploration. Exploring these sites will help ascertain the range of conditions that can support 
life and identify planetary processes that are responsible for generating and sustaining 
habitable worlds. Current landers and rovers are unable to access these areas of high interest 
due to limitations in precision landing techniques, need for large and sophisticated science 
instruments and a mission assurance and operations culture where risks are minimized at all 
costs. This research proposes using multiple spherical robots called SphereX for exploring 
these extreme environments. The design of SphereX is a complex task that involves a large 
number of design variables and multiple engineering disciplines. The methodology developed 
in this work uses Automated Multidisciplinary Design and Control Optimization (AMDCO) 
techniques to find near optimal design solutions in terms of mass, volume, power and control 
for SphereX for different mission scenarios. The implementation of AMDCO for SphereX 
design is a complex process because of complexity of modelling and implementation, 
discontinuities in the design space, and wide range of time scales and exploration objectives. 
We address these issues by using machine learning in the form of Evolutionary Algorithms 
integrated with gradient-based optimization techniques to search through the design space 
and find pareto optimal solutions for a given mission task. The design space is searched using 
a GA multi-objective optimizer at the system (global) level to find the Pareto-optimal results 
while gradient-based techniques are used to search at the discipline (local) level. The modeled 
disciplines are mobility system, power system, thermal system, shielding, communication 
system, avionics and shell. Using this technology, it is now possible to perform end to end 
automated preliminary design of planetary robots for surface exploration.  

I. Nomenclature 
𝓂𝓂 = mass of the robot 
𝓇𝓇 = radius of the robot 
𝑃𝑃 = power demand of the robot 
𝑓𝑓,𝔽𝔽 = objective function 
𝑔𝑔,𝔾𝔾 = inequality constraints 
ℎ,ℍ = equality constraints 
𝑑𝑑,𝕩𝕩 = design variables 
𝜆𝜆, 𝜇𝜇 = lagrange multiplier 
𝒥𝒥 = cost function 
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II. Introduction 
We aspire to send human and robotic explorers to every corner of our solar system to perform orbital, surface and 

even subsurface exploration in the next few decades.  These explorers will pave the way towards identifying the 
diverse surface environments, physical processes and structure of the planets and small bodies answering fundamental 
questions about the origins of the solar system, conditions to sustain life and prospects for resource utilization and off-
world human settlement. Achieving this major exploration milestone remains technologically daunting but not 
impossible. An emerging target are the extreme environments of the Moon, Mars and icy moons, including caves, 
canyons, cliffs, skylights and craters as shown in Fig. 1.  These are high-priority targets as outlined in the Planetary 
Science Decadal survey [1].  These environments are rich targets of origin studies, as the rocks and surfaces carved 
out from natural processes expose a time-record of ancient events including changing climate and surface composition, 
violent impacts/collisions events and evidence for organic chemicals.  Caves offer natural shelter from radiation, harsh 
surface processes such as dust storms and are generally insulated by the varying high and low external temperatures.  
These conditions could harbor isolated, ancient ecosystems. 

 
Fig. 1 Extreme  environments of the Moon and Mars: (1) High cliffs surrounding Echus Chasma on Mars 
(nasa.gov), (2) Tycho crater on Moon (NASA/Goddard/Arizona State University), (3) Lava tubes on Pavonis 
Mons on Mars (ESA), and (4) Mare Tranquilitatis pit on Moon (NASA/GSFC/Arizona State University). 

High resolution orbital imagery from the Lunar Reconnaissance Orbiter Camera (LROC) reveal evidence for 
subsurface voids and mare-pits on the lunar surface [2, 3].  Similar discoveries have been made with the HiRise camera 
onboard the Mars Reconnaissance Orbiter (MRO) observing the Martian surface.  An example pit on the moon is 
Mare Tranquilitatis pit (MTP; 8.335°N, 33.222°E) which opens into a sub-lunarean void at least 20 meters in extent. 
The pit diameters range from 86 to 100m with a maximum depth from shadow measures of ~107m. Several large, 
angular blocks are sparsely distributed across the floor, and likely represent detritus from the pit walls or collapsed 
roof materials which makes it impassable by conventional wheeled robots. Accessible voids could be used for a future 
human base because they offer a natural radiation and micrometeorite shield and offer constant habitable temperatures 
of -20 to -30°C [4]. 

Exploration of these extreme and rugged environments remains out of reach from current planetary rovers and 
landers; however, the 2015 NASA Technology Roadmaps prioritizes the need for next-generation robotic and 
autonomous systems that can explore these extreme and rugged environment [5].  The challenges are three-fold and 
stem from current landing technology that requires wide-open spaces with no obstacles or landing hazards. A second 
challenge stems from current planetary vehicle architectures.  Planetary rovers and landers ever since Luna 9, the first 
mission to soft-land on the Moon, have been generally growing in size and capability to house a growing variety of 
sophisticated science instruments. A third challenge has been the high standards of mission assurance expected.  Due 
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to the high costs and prestige for the nations involved, any form of exploratory risk that may reduce the life of the 
mission or result in damage to one or more subsystems is avoided.  This is despite the potential science rewards from 
taking these exploratory risks. 

A credible solution is to develop an architecture that permits taking high exploratory risks that translates into high 
reward science but without compromising the rest of the mission. Rapid advancement in electronics, sensors, actuators 
and power supplies have resulted in ever-shrinking devices and instruments that can be housed in small platforms.  
This has resulted in the wide adoption of CubeSats for Low Earth Orbit (LEO) missions and technology 
demonstrations. CubeSats are emerging as platform for performing high-risk, high-reward interplanetary exploration 
[6].  The technology uses Commercial-Off-The-Shelf (COTS) technology with adaptations to the space environment.  
Further technological advancement is leading towards radiation hardened version of these components for use in deep-
space and planetary environments.  However, these technologies still need to be proven in these planetary 
environments.   

We present an architecture of small, low-cost, modular spherical robot called SphereX that is designed for 
exploring extreme environments like caves, lava tubes, pits and canyons in low-gravity environments like the Moon, 
Mars, icy moons and asteroids as shown in Fig. 2 [40-42]. It consists of a mobility system to perform optimal 
exploration of these target environments. It also consists of space-grade electronics like computer board for command 
and data handling, power board for power management and radio transceiver for communicating among multiple 
robots. Moreover, it also consists of a power system for power generation/storage, multiple UHF/S-band antennas and 
accommodates payloads in the rest of the volume. A large rover or lander may carry several of these SphereX robots 
that can be tactically deployed to explore and access rugged environments inaccessible by it.  

 
Fig. 2 (Top) SphereX architecture, (Bottom) Available options for each subsystem of SphereX. 

However, the design of SphereX is a complex task that involves a large number of variables and multiple 
engineering disciplines. It is a highly coupled problem between multiple disciplines (Fig. 2(Bottom)), and it must 
balance payload objectives against its overall size, mass, power and control which affects its cost and operation. 
Moreover, each subsystem has multiple candidate solutions, e.g. mobility can be achieved through hopping, rolling or 
wheels, power system can be design through batteries that carries all the required power or can be generated on demand 
through fuel cells. Similarly, the selection of communication system and the avionics depends on numerous COTS 
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options available, the thermal system can be designed through active, passive or a combination of both. As such 
finding optimal design solutions for SphereX to meet a defined mission requirement is of paramount importance. 
Currently, space systems are optimized manually through evaluation of each discipline independently. With this labor-
intensive approach, although feasibility is achieved, there is no guarantee for achieving optimality of the overall 
system. Thus, space system design could benefit from the application of multidisciplinary design optimization (MDO). 
However, complexity arises in an MDO approach due to complexity of modeling, complexity and discontinuity in 
objective cost function and design space, and wide range of time scales and mission requirements. Here, we approach 
this problem by using a hybrid optimization process where the search of the design space is performed with a GA 
based multi-objective optimizer at the system level to find the Pareto-optimal results while using gradient-based 
techniques at the discipline level. The methodology developed in this work uses Automated Multidisciplinary Design 
and Control Optimization (AMDCO) techniques to find near optimal design solutions in terms of mass, volume, power 
and control for SphereX for different mission scenarios. Using this technology, it is now possible to perform end to 
end automated preliminary design of planetary robots for extreme environment exploration.  

For implementation perspective, the 
large number of disciplines of SphereX 
presents a significant challenge as they are 
coupled together. Fig. 3 shows the different 
disciplines of SphereX and how they are 
coupled together. The mission specifications 
and environment model affect design 
decisions of multiple disciplines of SphereX. 
For e.g. target distance affects the design of 
the mobility system, target mission time 
affects the power system and multiple 
number of robots introduces complexity in 
the communication system. Moreover, 
gravitational and surface properties models 
affect the design of the mobility system, 
radiation and temperature models affect the 
design of the thermal and shielding 
subsystems. Similarly, the mass and volume 
of each subsystem affect the design of the 
mobility system, and power requirement of 
each subsystem affect the design of the 
power system which in turn 
increase/decrease the mass and size of the power system affecting the mobility system. Furthermore, to increase 
payload volume, if we increase the size of the shell of the robot, its mass and inertia increases in the order of 𝒪𝒪(𝓇𝓇2), 
𝓇𝓇 being the radius of the shell, thus affecting the mobility system. As such finding optimal design for each subsystem 
taking inter-subsystem dependencies into account is of paramount importance. 

III. Background Study 
In this section, we review the literature that describes how optimization technology has been applied to the space 

system design and control process. The related research can be categorized into three groups. The first group 
approaches the space system design problem from the perspective of a single discipline, the second group employs 
multidisciplinary approaches and the third group unifies operation and control optimization with the design 
optimization process.  

Single Discipline Optimization (SDO) is the analysis and optimization of an engineering system with focus on a 
single discipline of a system. Detailed and complex modeling of system discipline often includes discrete or 
indifferentiable design variables that cannot be handled with gradient-based optimization but can be handled with 
gradient-free optimization techniques such as Genetic Algorithm (GA) or Particle Swarm Optimization (PSO). Hence, 
many single optimization researches focus on gradient-free optimization. Zhang et al. optimized the layout of the 
satellite subsystems with the integrated GA/PSO and Quasi-Principal Component Analysis (QPCA) [7]. Richie et al. 
used reduced-order, gradient-based solver to optimize the size of a miniature control moment gyroscope for a practical 
space mission. By analyzing attitude and energy storage requirements of a small satellite, their design problem can be 
converted to a constrained nonlinear programming problem which is a rare example of gradient-based optimizer 

Fig. 3 Design structure matrix of relevant disciplines of SphereX. 
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implementation in SDO [8]. Jain et al. optimized the power management of a small satellite using GA, which can be 
evaluated on Field-Programmable Gate Array (FPGA) in real time [9]. Hull et al. solved the spacecraft radiator design 
problem with GA [10]. Boudjemai et al. designed small satellite structural topologies with minimum compliance, 
minimum weight, and optimal compliant mechanisms with Finite Element Analysis (FEA) and GA [11]. The review 
result confirms that most of SDO literature have successfully implemented GA and other non-gradient based 
optimization methods. 

Multidisciplinary design optimization (MDO) is a rapidly growing field with applications to a variety of aerospace 
problems and many aerospace system designers have applied MDO approaches to their system design projects. 
However, most MDO efforts have focused on the design of aircraft structures and space launch vehicles, and very 
little work has considered the MDO application to space systems with complex constrains such as small satellites and 
planetary exploration robots. The first identified MDO application to space systems was a launch vehicle design done 
by Olds et al [12]. Others have applied MDO to launch vehicles as well where the application of MDO was extended 
to space system engineering [13-16]. Satellite design with MDO was first applied by Matossian to the design of an 
Earth-observing satellite mission [17]. Spacecraft design-related research was continued by Mosher [18], Riddle [19], 
and Bearden [20], who focused on the development of space system engineering tools. Increased complexity of the 
design problem necessitates an organized and structured solving procedure and system engineering tool makes the 
evaluation of the optimization results easy by including various models and their simulation environments. George et 
al. [21] developed the Multidisciplinary Integrated Design Assistant for Spacecraft (MIDAS), which is a graphical 
programming language specially for space mission design. Fukunaga et al. [22] built the Optimization ASsIStant 
(OASIS), a system tool that can provide the optimized spacecraft using a set of generic, metaheuristic optimization 
algorithms (e.g., GA, simulated annealing), which are configured for a particular optimization problem by an adaptive 
problem solver based on artificial intelligence and machine learning techniques. Mosher et al. [23, 24] suggested a 
tool for conceptual spacecraft design, Spacecraft Concept Optimization and Utility Tool (SCOUT), that uses a set of 
design-estimating and cost-estimating relationships that are coupled with genetic algorithm optimization. Stump et al. 
[25] developed the Advanced Trade Space Visualizer (ATSV) that facilitates design by using a shopping paradigm to 
support trade space exploration. Barnhart et al. [26] implemented a Spacecraft Portal for Integrated Design in Real-
time project (SPIDR), a systems-engineering-based framework for satellite design with an artificial-intelligence-based 
optimization algorithm that incorporates user-defined rules and constraints. Ravanbakhsh et al. [27] introduced a 
structural design-sizing tool containing the primary structures properties and system level variables. Apart from the 
above system engineering tool developments, many researchers have developed novel MDO methodology for space 
systems. Taylor et al. [28] provided an evaluation of optimization techniques which are applied to increasingly 
complex spacecraft design problems. Jilla et al. [29] developed the constructing process of multi-objective, 
multidisciplinary design optimization systems. Jafarsalehi et al. [30] focused on the development of an efficient 
distributed Collaborative Optimization (CO) method for small satellite missions. GA was used at the system level 
while gradient-based techniques were utilized at the discipline level. Form the MDO literature, we can see that many 
researchers developed system engineering tools that considers multiple disciplines by applying mathematical 
optimization techniques to improve space system designs.  

Unifying operation and control optimization with the design optimization process is another approach to design 
space systems. Spangelo et al. [31] developed models and algorithms for solving single-satellite, multi-ground station 
communication scheduling problems, with the objective of maximizing the total amount of data downloaded from 
space. The most interesting aspect of their research is that they included the ground station operation over time in the 
optimization problem, making it more challenging. Hwang et al. [32] applied a new mathematical framework for 
gradient-based multidisciplinary optimization that automatically computes the coupled derivatives of the 
multidisciplinary system via a generalized form of the adjoint method to unify the design and the operation of a 
satellite. 

Motivated by these ideas, in this research, the design and control of SphereX is unified in our MDO problem. The 
solutions of the MDO problem are then used for controller robustness analysis towards uncertainties and unmodeled 
dynamics and optimal path planning in a target environment.  

IV. Approach 
Based on the literature review, a multidisciplinary design and control optimization-based approach is proposed to 

explore the question of how to maximize the payload mass, volume and power budget while minimizing the total 
mass, volume and power of SphereX. The problem is approached by using a hybrid optimization process where the 
search of the design space is performed with a multi-objective optimizer at the system level to find the Pareto-optimal 
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results while using gradient-based techniques at the discipline level as shown is Fig. 4 [37]. At the system level, the 
multi-objective optimization problem is formulated as Eq. (1). 

min𝔽𝔽𝑘𝑘(𝕩𝕩) 𝑘𝑘 = 1,2, … ,𝐾𝐾 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 �
𝔾𝔾𝑙𝑙(𝕩𝕩) ≤ 0 𝑙𝑙 = 1,2, … , 𝐿𝐿
ℍ𝑚𝑚(𝕩𝕩) = 0 𝑚𝑚 = 1,2, … ,𝑀𝑀
𝕩𝕩𝑗𝑗

(𝐿𝐿) ≤ 𝕩𝕩𝑗𝑗 ≤ 𝕩𝕩𝑗𝑗
(𝑈𝑈) 𝑗𝑗 = 1,2, … , 𝐽𝐽

(1) 

The solution 𝕩𝕩 is a vector of 𝐽𝐽 system level design variables: 𝕩𝕩 = [𝕩𝕩1,𝕩𝕩2, … ,𝕩𝕩𝐽𝐽]𝑇𝑇. There are 𝐾𝐾 objective functions 
𝔽𝔽 = [𝔽𝔽1,𝔽𝔽2, … ,𝔽𝔽𝐾𝐾]𝑇𝑇. Associated with the problem are 𝐿𝐿 inequality constraints and 𝑀𝑀 equality constraints. The last 
set of 𝐽𝐽 constraints are the variable bounds, restricting each decision variable 𝕩𝕩𝑗𝑗 to take a value within a lower 𝕩𝕩𝑗𝑗

(𝐿𝐿) 
and an upper 𝕩𝕩𝑗𝑗

(𝑈𝑈) bound.  

 
Fig. 4 Hybrid optimization approach for multidisciplinary optimization. 

Each of the subsystem discipline are modeled as a single-objective optimization problem and is formulated as Eq. 
(2). 

𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝑖𝑖 = 1,2, … ,𝑁𝑁

⎩
⎪
⎨

⎪
⎧ min 𝑓𝑓𝑖𝑖(𝕕𝕕𝑖𝑖)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 �
𝑔𝑔𝑖𝑖𝑖𝑖(𝕕𝕕𝑖𝑖) ≤ 0 𝑝𝑝 = 1,2, … ,𝑃𝑃𝑖𝑖
ℎ𝑖𝑖𝑖𝑖(𝕕𝕕𝑖𝑖) = 0 𝑞𝑞 = 1,2, … ,𝑄𝑄𝑖𝑖
𝕕𝕕𝑖𝑖𝑖𝑖

(𝐿𝐿) ≤ 𝕕𝕕𝑖𝑖𝑖𝑖 ≤ 𝕕𝕕𝑖𝑖𝑖𝑖
(𝑈𝑈) 𝑟𝑟 = 1,2, … ,𝑅𝑅𝑖𝑖

(2) 

For each subsystem discipline 𝑖𝑖, 𝕕𝕕𝑖𝑖 is a vector of 𝑅𝑅𝑖𝑖 discipline level design variables: 𝕕𝕕𝑖𝑖 = [𝕕𝕕𝑖𝑖1,𝕕𝕕𝑖𝑖2, … ,𝕕𝕕𝑖𝑖𝑅𝑅𝑖𝑖]
𝑇𝑇 . 

Each discipline has 𝑃𝑃𝑖𝑖  inequality constraints, 𝑄𝑄𝑖𝑖  equality constraints, and 𝑅𝑅𝑖𝑖 constraints that restricts the design 
variables within the upper and lower bounds. The vector 𝕪𝕪 represents the specifications of the COTS components 
selected for each subsystem based on the inventory list and the system level design variables 𝕩𝕩. Moreover, 𝕔𝕔𝑖𝑖𝑖𝑖 ,∀𝑖𝑖 ∈
{1, … ,𝑁𝑁},∀𝑗𝑗 ∈ {1, … ,𝑁𝑁}, 𝑖𝑖 ≠ 𝑗𝑗 are the coupling functions calculated by discipline 𝑖𝑖 and input to discipline 𝑗𝑗. 

V. Methods 
In order to find optimal design solutions of SphereX, multiple subsystem discipline level single-objective 

optimization problems, and a system level multi-objective optimization problem are to be solved simultaneously. This 
section provides the methods used in this research to solve the single-objective and multi-objective optimization 
problems. 

A. Single-objective Optimization 
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As discussed above, the subsystem discipline models are modeled as single-objective optimization problem with 
one objective function, 𝑃𝑃 inequality constraints, 𝑄𝑄 equality constraints and 𝑅𝑅 side constraints. The 𝑅𝑅 side constraints 
are converted into 2𝑅𝑅 inequality constraints such that there are 𝑆𝑆 = 𝑃𝑃 + 2𝑅𝑅 inequality constraints, thus the problem 
is modeled as a nonlinear optimization problem (NLP) of the form shown in Eq. (3). 

min
𝕕𝕕∈ℝ

𝑓𝑓(𝕕𝕕)

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 �𝑔𝑔
(𝕕𝕕) ≤ 0

ℎ(𝕕𝕕) = 0
(3) 

Where, 𝑓𝑓:ℝ𝑅𝑅 → ℝ is the objective function, the function 𝑔𝑔:ℝ𝑅𝑅 → ℝ𝑆𝑆 and ℎ:ℝ𝑅𝑅 → ℝ𝑄𝑄 are the inequality and 
equality constraints. For scalar-valued function 𝑓𝑓, the gradient is denoted by ∇𝑓𝑓(𝕕𝕕) and the Hessian 𝐻𝐻𝐻𝐻(𝕕𝕕) by the 
matrix of second partial derivative as Eq. (4) and (5) respectively. 

∇𝑓𝑓(𝕕𝕕) = �
𝜕𝜕𝜕𝜕(𝕕𝕕)
𝜕𝜕𝕕𝕕1

,
𝜕𝜕𝜕𝜕(𝕕𝕕)
𝜕𝜕𝕕𝕕2

, … ,
𝜕𝜕𝜕𝜕(𝕕𝕕)
𝜕𝜕𝕕𝕕𝑅𝑅

�
𝑇𝑇

(4) 

�𝐻𝐻𝐻𝐻(𝕕𝕕)�
𝑖𝑖𝑖𝑖

=
𝜕𝜕2𝑓𝑓(𝕕𝕕)
𝜕𝜕𝕕𝕕𝑖𝑖𝜕𝜕𝕕𝕕𝑗𝑗

,     1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑅𝑅 (5) 

For vector-valued functions, ∇ is used to denote the Jacobian of the function as in Eq. (6). 
∇ℎ(𝕕𝕕) = �∇ℎ1(𝕕𝕕),∇ℎ2(𝕕𝕕), … ,∇ℎ𝑄𝑄(𝕕𝕕)� (6) 

The scalar-valued function ℒ:ℝ𝑅𝑅×𝑆𝑆×𝑄𝑄 → ℝ defined by Eq. (7) 
ℒ(𝕕𝕕, 𝜆𝜆, 𝜇𝜇) = 𝑓𝑓(𝕕𝕕) + 𝜆𝜆𝑇𝑇ℎ(𝕕𝕕) + 𝜇𝜇𝑇𝑇𝑔𝑔(𝕕𝕕) (7) 

is called the Lagrangian function of the NLP. The vectors 𝜆𝜆 ∈ ℝ𝑄𝑄 and 𝜇𝜇 ∈ ℝ𝑆𝑆 are the Lagrange multiplier vectors. 
Given a vector 𝕕𝕕, the set of active constraints at 𝕕𝕕 consists of the inequality constraints 𝑔𝑔∎(𝕕𝕕), if any, satisfied as 
equalities at 𝕕𝕕. The index set of active constraints are denoted by, ℐ(𝕕𝕕) = {𝑖𝑖:𝑔𝑔𝑖𝑖(𝕕𝕕) = 0}. Setting 𝑆𝑆𝕕𝕕 = |ℐ(𝕕𝕕)| and 
assuming ℐ(𝕕𝕕) = {𝑖𝑖1, 𝑖𝑖2, … , 𝑖𝑖𝑆𝑆𝕕𝕕}, the matrix 𝐺𝐺(𝕕𝕕) ∈ ℝ𝑅𝑅×(𝑄𝑄+𝑆𝑆𝕕𝕕) is made up of the matrix ∇ℎ(𝕕𝕕) along with the columns 
∇𝑔𝑔𝑖𝑖(𝕕𝕕), 𝑖𝑖 ∈ ℐ(𝕕𝕕) as in Eq. (8). 

𝐺𝐺(𝕕𝕕) = �∇ℎ1(𝕕𝕕),∇ℎ2(𝕕𝕕), … ,∇ℎ𝑄𝑄(𝕕𝕕),∇𝑔𝑔𝑖𝑖1(𝕕𝕕), … ,∇𝑔𝑔𝑖𝑖𝑆𝑆𝕕𝕕(𝕕𝕕)� (8) 

For 𝕕𝕕∗ ∈ ℝ𝑅𝑅 to be an isolated local minimum of the NLP, the following conditions known as the Karush-Kuhn-
Tucker (KKT) conditions should apply [33]: 

(A1): the first order necessary conditions hold, i.e., there exist optimal Lagrange multiplier vectors 𝜆𝜆∗ and 𝜇𝜇∗ ≥ 0 
such that 

𝛻𝛻ℒ(𝕕𝕕∗, 𝜆𝜆∗, 𝜇𝜇∗) = 𝛻𝛻𝛻𝛻(𝕕𝕕∗) + 𝛻𝛻ℎ(𝕕𝕕∗)𝜆𝜆∗ + 𝛻𝛻𝛻𝛻(𝕕𝕕∗)𝜇𝜇∗ = 0 
(A2): The columns of 𝐺𝐺(𝕕𝕕∗) are linearly independent 
(A3): Strict complementary slackness holds, i.e., 

𝑔𝑔𝑖𝑖(𝕕𝕕∗)𝜇𝜇𝑖𝑖∗ = 0 
for 𝑖𝑖 = 1, … , 𝑆𝑆 and if 𝑔𝑔𝑖𝑖(𝕕𝕕∗) = 0, then 𝜇𝜇𝑖𝑖∗ > 0. 
(A4): The Hessian of the Lagrangian function with respect to 𝕕𝕕 is positive definite on the null space of 𝐺𝐺(𝕕𝕕∗)𝑇𝑇; 

i.e., 
𝑎𝑎𝑇𝑇𝐻𝐻ℒ(𝕕𝕕∗, 𝜆𝜆∗, 𝜇𝜇∗)𝑎𝑎 > 0 

For all 𝑎𝑎 ≠ 0 such that 𝐺𝐺(𝕕𝕕∗)𝑇𝑇𝑎𝑎 = 0 
To solve the NLP problem, The Sequential Quadratic Programming (SQP) method is used which is an iterative 

method in which, at a current iterate 𝕕𝕕𝑘𝑘, the step to the next iterate is obtained through information generated by 
solving a quadratic subproblem. The local convergence of the SQP method follows from the application of Newton’s 
method to the nonlinear system given by the KKT conditions as shown in Eq. (9). 

Ψ(𝕕𝕕, 𝜆𝜆, 𝜇𝜇) = �
𝛻𝛻ℒ(𝕕𝕕, 𝜆𝜆, 𝜇𝜇)

ℎ(𝕕𝕕)
𝑔𝑔∎(𝕕𝕕)

� = 0 (9) 

The Jacobian of the nonlinear system is given by Eq. (10). 

𝐽𝐽(𝕕𝕕, 𝜆𝜆, 𝜇𝜇) = �
𝐻𝐻ℒ(𝕕𝕕, 𝜆𝜆, 𝜇𝜇) 𝛻𝛻ℎ(𝕕𝕕) 𝛻𝛻𝑔𝑔∎(𝕕𝕕)
𝛻𝛻ℎ(𝕕𝕕) 0 0
𝛻𝛻𝑔𝑔∎(𝕕𝕕) 0 0

� (10) 

The conditions (A2) and (A4) imply that the Jacobian is nonsingular at a local solution. Therefore, the Newton 
iteration is given by Eq. (11). 

𝕕𝕕𝑘𝑘+1 = 𝕕𝕕𝑘𝑘 + 𝑠𝑠𝕕𝕕 
𝜆𝜆𝑘𝑘+1 = 𝜆𝜆𝑘𝑘 + 𝑠𝑠𝜆𝜆 (11) 
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𝜇𝜇𝑘𝑘+1 = 𝜇𝜇𝑘𝑘 + 𝑠𝑠𝜇𝜇 
where, 𝑠𝑠 = (𝑠𝑠𝕕𝕕, 𝑠𝑠𝜆𝜆, 𝑠𝑠𝜇𝜇) is the solution of Eq. (12). 

𝐽𝐽(𝕕𝕕𝑘𝑘 , 𝜆𝜆𝑘𝑘 , 𝜇𝜇𝑘𝑘)𝑠𝑠 = −Ψ(𝕕𝕕𝑘𝑘 , 𝜆𝜆𝑘𝑘 , 𝜇𝜇𝑘𝑘) (12) 

B. Multi-objective Optimization 
As discussed above, the system model is modeled as a multi-objective optimization problem with 𝐾𝐾 objective 

functions, 𝐿𝐿 inequality constraints, 𝑀𝑀 equality constraints and 𝐽𝐽 side constraints. The 𝐽𝐽 side constraints are converted 
into 2𝐽𝐽 inequality constraints such that there are 𝑇𝑇 = 𝐿𝐿 + 2𝐽𝐽 inequality constraints, thus the problem is modeled as in 
Eq. (13). 

min𝔽𝔽𝑘𝑘(𝕩𝕩) 𝑘𝑘 = 1,2, … ,𝐾𝐾 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 �𝔾𝔾𝑡𝑡(𝕩𝕩) ≤ 0 𝑡𝑡 = 1,2, … ,𝑇𝑇
ℍ𝑚𝑚(𝕩𝕩) = 0 𝑚𝑚 = 1,2, … ,𝑀𝑀 (13) 

The constraints divide the search space into two divisions – feasible and infeasible regions. The constraints are 
handled by using the Penalty Function approach. For each solution 𝕩𝕩(𝑖𝑖), the constraint violation for the inequality 
constraints 𝔾𝔾𝑡𝑡�𝕩𝕩(𝑖𝑖)� for 𝑡𝑡 = 1,2, … ,𝑇𝑇 are calculated as in Eq. (14). 

𝓌𝓌𝑡𝑡�𝕩𝕩(𝑖𝑖)� = ��𝔾𝔾𝑡𝑡�𝕩𝕩(𝑖𝑖)��,   𝑖𝑖𝑖𝑖 𝔾𝔾𝑡𝑡�𝕩𝕩(𝑖𝑖)� > 0
0                    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

(14) 

The constraint violation for the equality constraints ℍ𝑚𝑚(𝕩𝕩) for 𝑚𝑚 = 1,2, … ,𝑀𝑀 are calculated as in Eq. (15). 
𝓌𝓌𝑚𝑚�𝕩𝕩(𝑖𝑖)� = �ℍ𝑚𝑚�𝕩𝕩(𝑖𝑖)�� (15) 

Thereafter, all constraint violations are added together to get the overall constraint violation as in Eq. (16). 

Ω�𝕩𝕩(𝑖𝑖)� = �𝓌𝓌𝑡𝑡�𝕩𝕩(𝑖𝑖)�
𝑇𝑇

𝑡𝑡=1

+ �𝓌𝓌𝑚𝑚�𝕩𝕩(𝑖𝑖)�
𝑀𝑀

𝑚𝑚=1

(16) 

This constraint violation is then multiplied with a penalty parameter 𝒫𝒫𝑘𝑘 and then the product is added to each of 
the objective function values as in Eq. (17). 

𝒥𝒥𝑘𝑘�𝕩𝕩(𝑖𝑖)� = 𝔽𝔽𝑘𝑘�𝕩𝕩(𝑖𝑖)� + 𝒫𝒫𝑘𝑘Ω�𝕩𝕩(𝑖𝑖)� (17) 
The cost function 𝒥𝒥𝑘𝑘 takes into account the constraint violations. For a feasible solution the corresponding Ω term 

is zero and 𝒥𝒥𝑘𝑘 becomes equal to the original objective function 𝔽𝔽𝑘𝑘. However, for an infeasible solution, 𝒥𝒥𝑘𝑘 > 𝔽𝔽𝑘𝑘, 
thereby adding a penalty corresponding to the total constraint violation. One of the striking differences between single-
objective optimization and multi-objective optimization is that in multi-objective optimization the objective(cost) 
functions constitute a multi-dimensional space, in addition to the usual design variable space (𝒟𝒟). This additional 
space is called the objective space (𝒵𝒵). For each solution 𝕩𝕩 in the design variable space, there exists a point in the 
objective space, denoted by 𝒥𝒥(𝕩𝕩) = z = (𝑧𝑧1, 𝑧𝑧2, … , 𝑧𝑧𝐾𝐾)𝑇𝑇 . The mapping takes place between an 𝐽𝐽-dimensional solution 
vector and an 𝐾𝐾-dimensional objective vector. Another difference between single-objective optimization and multi-
objective optimization is that unlike single-objective optimization, multi-objective optimization with multiple 
conflicting objectives cannot have a single optimum solution which simultaneously optimizes all objectives. The 
resulting outcome is a set of optimal solutions with a varying degree of objective values called the Pareto-optimal 
solutions. To solve multi-objective optimization problem, there are a few classical methods like ‘Weighted Sum 
Method’, ‘ε-Constraint Method’, ‘Weighted Metric Method’, ‘Benson’s Method’, ‘Value Function Method’, and 
‘Goal Programming Method’. All these classical methods use a single solution update in every iteration and mainly 
use a deterministic transition rule, however, in case of evolutionary algorithms (EA), a population of solutions is 
processed in every iteration (or generation). This feature alone gives an EA a tremendous advantage for its use in 
solving multi-objective optimization problems (MOOPs) [34]. 

For this research, a real-parameter elitist non-dominated sorting genetic algorithm (NSGA-II) is used to find the 
pareto optimal solutions. Initially a random parent population of the design variables 𝑃𝑃0 is created of size 𝑁𝑁𝑃𝑃. For each 
individual, the values of each cost functions are calculated, and the population is sorted based on nondomination and 
each solution is assigned a rank (𝑟𝑟) equal to its nondomination level (ℱ) and a crowding distance (𝑑𝑑). Since the 
problem is formulated as a minimization problem, the vector 𝕩𝕩(1) is partially less than another vector 𝕩𝕩(2), (𝕩𝕩(1) ≺
𝕩𝕩(2)), when no value of 𝕩𝕩(2) is less than 𝕩𝕩(1) and at least one value of 𝕩𝕩(2) is strictly greater than 𝕩𝕩(1). If 𝕩𝕩(1) is partially 
less than 𝕩𝕩(2), the solution 𝕩𝕩(1) dominates 𝕩𝕩(2) [34]. Any member of such vectors which is not dominated by any other 
member is said to be nondominated. To get an estimate of the density of solutions surrounding a particular solution in 
a nondomination level, a quantity called crowding distance that serves as an estimate of the perimeter of the cuboid 
formed by using the nearest neighbors as vertices is calculated [34]. For computing the crowding distance, first the 
number of solutions in ℱ is calculated as 𝑙𝑙 = |ℱ|, and for each 𝑖𝑖 in the set 𝑑𝑑𝑖𝑖 = 0 is assigned. Next for each objective 
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function 𝑘𝑘, the set is sorted in worst order of 𝒥𝒥𝑘𝑘 and the sorted indices are stored in a vector: 𝐼𝐼𝑘𝑘 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝒥𝒥𝑘𝑘 , >). Nest 
for each 𝑘𝑘, a large distance is assigned to the boundary solutions, 𝑑𝑑𝐼𝐼1𝑘𝑘 = 𝑑𝑑𝐼𝐼𝑙𝑙𝑘𝑘 = ∞, and for all other solutions 𝑗𝑗 =
2 𝑡𝑡𝑡𝑡 (𝑙𝑙 − 1), the distance is shown by Eq. (18). 

𝑑𝑑𝐼𝐼𝑗𝑗𝑘𝑘 = 𝑑𝑑𝐼𝐼𝑗𝑗𝑘𝑘 +
𝒥𝒥𝑘𝑘
�𝐼𝐼𝑗𝑗+1
𝑘𝑘 �

− 𝒥𝒥𝑘𝑘
�𝐼𝐼𝑗𝑗−1
𝑘𝑘 �

𝒥𝒥𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚 − 𝒥𝒥𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚
(18) 

 The index 𝐼𝐼𝑗𝑗 denotes the solution index of the j-th member in the sorted list. The calculation is continued with 
other objective functions and the overall crowding distance value (𝑑𝑑) is calculated as the sum of individual distance 
values corresponding to each objective. With the non-domination rank and crowding distance of each individual 
determined, the crowded tournament selection operator is used to select individuals for crossover [34]. The selection 
operator compares two solutions and returns the winner of the tournament. A solution 𝑖𝑖 wins a tournament with another 
solution 𝑗𝑗 if solution 𝑖𝑖 has a better rank, that is, 𝑟𝑟𝑖𝑖 < 𝑟𝑟𝑗𝑗. If they have the same rank, solution 𝑖𝑖 wins if it has a better 
crowding distance, that is, 𝑟𝑟𝑖𝑖 = 𝑟𝑟𝑗𝑗 and 𝑑𝑑𝑖𝑖 > 𝑑𝑑𝑗𝑗. Next crossover, and mutation operators are used to create an offspring 
population 𝑄𝑄0 of size 𝑁𝑁𝑄𝑄. For crossover, a blend crossover (BLX-α) operator is used [35]. For two parent solutions 
𝕩𝕩𝑖𝑖

(1,𝑡𝑡) and 𝕩𝕩𝑖𝑖
(2,𝑡𝑡) (assuming 𝕩𝕩𝑖𝑖

(1,𝑡𝑡) < 𝕩𝕩𝑖𝑖
(2,𝑡𝑡)) in generation (𝑡𝑡), the BLX-α randomly picks a solution in the range [𝕩𝕩𝑖𝑖

(1,𝑡𝑡) −
𝛼𝛼�𝕩𝕩𝑖𝑖

(2,𝑡𝑡) − 𝕩𝕩𝑖𝑖
(1,𝑡𝑡)�,𝕩𝕩𝑖𝑖

(2,𝑡𝑡) + 𝛼𝛼�𝕩𝕩𝑖𝑖
(2,𝑡𝑡) − 𝕩𝕩𝑖𝑖

(1,𝑡𝑡)�]. Thus if 𝑢𝑢𝑖𝑖 is a random number between 0 and 1, the following is an 
offspring: 

𝕩𝕩𝑖𝑖
(1,𝑡𝑡+1) = (1 − 𝛾𝛾𝑖𝑖)𝕩𝕩𝑖𝑖

(1,𝑡𝑡) + 𝛾𝛾𝑖𝑖𝕩𝕩𝑖𝑖
(2,𝑡𝑡) (19) 

where, 𝛾𝛾𝑖𝑖 = (1 + 2𝛼𝛼)𝑢𝑢𝑖𝑖 − 𝛼𝛼, which is uniformly distributed for a fixed value of 𝛼𝛼. If 𝛼𝛼 = 0, this crossover creates 
a random solution in the range (𝕩𝕩𝑖𝑖

(1,𝑡𝑡),𝕩𝕩𝑖𝑖
(2,𝑡𝑡)). This operator allows the searching of the entire space early on and also 

allow to maintain a focused search when the population tends to converge in some region in the search space. During 
mutation, a non-uniform mutation operator is used, where the probability of creating a solution closer to the parent is 
more than the probability of creating one away from it as illustrated Eq. (20) [36]. However, as the generation (𝑡𝑡) 
proceed, this probability of creating solutions closer to the parent gets higher and higher. 

𝕩𝕩𝑖𝑖
(𝑡𝑡+1) = 𝕩𝕩𝑖𝑖

(𝑡𝑡) + 𝜏𝜏�𝕩𝕩𝑖𝑖
(𝑈𝑈) − 𝕩𝕩𝑖𝑖

(𝐿𝐿)� �1 − 𝑢𝑢𝑖𝑖
�1− 𝑡𝑡

𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚
�
𝑏𝑏

� (20) 

Here, 𝜏𝜏 takes a Boolean value, -1 or 1, each with a 
probability of 0.5. The parameter 𝑢𝑢𝑖𝑖 is a random number 
between 0 and 1, 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum number of 
allowed generations, and 𝑏𝑏 is a user defined parameter. In 
this way, from early on the above mutation operator acts 
like a uniform distribution, while in later generations it 
acts like Dirac’s function, thus allowing a focused search. 
For variables that have integer constraints, it is rounded 
off to the nearest integer after crossover and mutation. 
Since elitism is introduced by comparing current 
population with previously found best nondominated 
solutions, the procedure is different after the initial 
generation [34]. For the 𝑡𝑡𝑡𝑡ℎ generation, first a combined 
population 𝑅𝑅𝑡𝑡 = 𝑃𝑃𝑡𝑡 ∪ 𝑄𝑄𝑡𝑡  is formed. The population 𝑅𝑅𝑡𝑡 is 
of size 𝑁𝑁𝑃𝑃 + 𝑁𝑁𝑄𝑄. Then, the population is sorted according 
to nondomination. Since all previous and current 
population members are included in 𝑅𝑅𝑡𝑡, elitism is 
ensured. Now, solutions belonging to the best 
nondominated set ℱ1 are emphasized more than any other solution in the combined population. If the size of ℱ1 is 
smaller than 𝑁𝑁𝑃𝑃, we choose all members of the set ℱ1 for the new population 𝑃𝑃𝑡𝑡+1. The remaining members of the 
population 𝑃𝑃𝑡𝑡+1 are chosen from subsequent nondominated fronts in the order of their ranking. Thus, solutions from 
the set ℱ2 are chosen next, followed by solutions from the set ℱ3, and so on. This procedure is continued until no more 
sets can be accommodated. When the set ℱ𝑙𝑙 is the last nondominated set beyond which no other set can be 
accommodated, the count of solutions in all sets from ℱ1 to ℱ𝑙𝑙 would be larger than the population size. To choose 
exactly 𝑁𝑁𝑃𝑃 population members, we sort the solutions of the last front ℱ𝑙𝑙 using the crowding distance operator in 
descending order and choose the best solutions needed to fill all population slots as shown in Fig. 5. The new 

Fig. 5 Schematic of the NSGA-II Procedure. 
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population 𝑃𝑃𝑡𝑡+1 of size 𝑁𝑁𝑃𝑃 is now used for selection, crossover, and mutation to create a new population 𝑄𝑄𝑡𝑡+1 of size 
𝑁𝑁𝑄𝑄. To measure the performance of the multi-objective optimization, a metric ∆ that measures the extent of spread 
achieved among the obtained pareto solutions is used [34]. First, the Euclidean distance 𝑑𝑑𝑖𝑖 between consecutive 
solutions obtained in the nondominated set of solutions is calculated. Next the average 𝑑̅𝑑 of these distances is 
calculated and thereafter ∆ is calculated by Eq. (21). 

∆=
∑ �𝑑𝑑𝑖𝑖 − 𝑑̅𝑑�𝑁𝑁−1
𝑖𝑖=1

(𝑁𝑁 − 1)𝑑̅𝑑
(21) 

Where, 𝑁𝑁 is the number of pareto optimal solutions. With 𝑁𝑁 solutions, there are (𝑁𝑁 − 1) consecutive distances, 
thus the denominator is the value of the numerator for the case when 𝑁𝑁 solutions lie in one solution. When there is a 
large variance in 𝑑𝑑𝑖𝑖, the value of the above metric can be greater than one. However, a good distribution would make 
all distances 𝑑𝑑𝑖𝑖 = 𝑑̅𝑑, making the metric to take a value zero.  

VI. Environment and Subsystem Models 
The ambient environmental factors present on the lunar and Martian surface pose some of the most difficult 

challenges for the success of long-term robotic 
exploration. These factors include dangerous 
radiation levels and high range of temperatures that 
can pose a variety of complications like thermal 
expansion and contraction, bit flips, and electrical 
leakage. Moreover, the dynamics and efficiency of 
the robot is dependent on the gravity and surface 
interaction parameters. As such, the design of the 
robot should take these factors in account. The 
environment models include a) Temperature model, 
b) Radiation model, c) Gravitational model, and d) 
Surface interaction model for the surface of the 
Moon and Mars that interacts with the design of 
SphereX. 

Mathematical models for each subsystem 
disciplines of SphereX are also developed for this 
research. The modeled subsystems are mobility 
system, power system, thermal system, shielding, 
communication system, avionics and shell [38, 39]. Moreover, for the mobility subsystem, multiple controllers are 
developed that interacts with the mathematical model during each iteration of the optimization process. Each 
subsystem is defined by multiple design variables, one objective function and multiple equality, inequality and side 
constraints. The mathematical model is used for iteration to find the optimal design variables and the mass, volume 
and power requirements for each subsystem are calculated as shown in Fig. 6. The mass, volume and power 
requirements for each subsystem will then be used for the system level optimization process. 

VII. Automated Assembly 
With all the dimensions of each subsystem calculated a program was written for automated assembly for all the 

components and MATLAB VRML was used to visualize the model. Each subsystem was divided into individual 
components and separate codes with conditional statements were written for each component. For the final assembly, 
first a sphere of radius 𝓇𝓇 is created and then the insulation and shielding spheres are added inside it. Next, the mobility 
subsystem is assembled which occupies the lower half of SphereX. On top of the mobility subsystem, the avionics 
stack and the power system are assembled. If tanks are required for the system, they are assembled next based on 
available free spaces. The antennas are then assembled on the outer surface of the sphere. For each subsystem a binary 
assembly index 𝐼𝐼𝑖𝑖 , 𝑖𝑖 = 1,2, … ,𝑁𝑁 is assigned based on its feasibility of assembling inside the sphere, where 𝑁𝑁 is the 
number of subsystems. Finally, the assembly index of the entire system is determined by an AND logical operator as 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = ∏ 𝐼𝐼𝑖𝑖𝑁𝑁

𝑖𝑖=1 which will be used as a constraint for the system level multi-objective optimization problem. 

VIII. System Level Optimization 
With all the subsystem models and their respective optimization models defined, this section defines the system 

level optimization model. The objective of our MDO approach is to find the optimum mass and radius of the robot 

Fig. 6 Block representation of each subsystem models. 
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(SphereX) that accommodates the maximum payload in terms of mass, volume and power based on predefined mission 
specifications. The problem is formulated as a multi-objective optimization problem (MOOP) with 12 design variables 
𝕩𝕩 = [𝓂𝓂,𝓇𝓇,𝑃𝑃,𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼, 𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2, 𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼 , 𝑐𝑐𝐼𝐼𝐼𝐼, 𝑝𝑝𝐼𝐼𝐼𝐼 , 𝑏𝑏𝐼𝐼𝐼𝐼, 𝑡𝑡𝐼𝐼𝐼𝐼, 𝑎𝑎𝐼𝐼𝐼𝐼], 4 objective functions and 5+ constraints, where 𝓂𝓂 and 𝓇𝓇 
are the mass and radius of the robot, 𝑃𝑃 is the power demand, 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼 defines the type, and 𝑠𝑠𝑠𝑠1 and 𝑠𝑠𝑠𝑠2 the subtype of 
the mobility system, 𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼 defines the type of power system and the COTS IDs are defined as main computer (𝑐𝑐𝐼𝐼𝐼𝐼), 
power management board (𝑝𝑝𝐼𝐼𝐼𝐼), battery (𝑏𝑏𝐼𝐼𝐼𝐼), radio transceiver board (𝑡𝑡𝐼𝐼𝐼𝐼), and attitude controller board (𝑎𝑎𝐼𝐼𝐼𝐼). Based 
on the values of mass 𝓂𝓂, radius 𝓇𝓇, and power demand 𝑃𝑃 with bounds 𝓂𝓂 (𝑏𝑏) = [𝓂𝓂 (𝐿𝐿) 𝓂𝓂 (𝑈𝑈)], 𝓇𝓇(𝑏𝑏) = [𝓇𝓇(𝐿𝐿) 𝓇𝓇(𝑈𝑈)], 
and 𝑃𝑃(𝑏𝑏) = [𝑃𝑃(𝐿𝐿) 𝑃𝑃(𝑈𝑈)] it is normalized between [0 1] as shown in Eq. (22). 

𝓂𝓂 =
𝓂𝓂−𝓂𝓂 (𝐿𝐿)

𝓂𝓂 (𝑈𝑈) −𝓂𝓂 (𝐿𝐿) ,   𝓇𝓇 =
𝓇𝓇 − 𝓇𝓇(𝐿𝐿)

𝓇𝓇(𝑈𝑈) − 𝓇𝓇(𝐿𝐿) ,   𝑃𝑃 =
𝑃𝑃 − 𝑃𝑃(𝐿𝐿)

𝑃𝑃(𝑈𝑈) − 𝑃𝑃(𝐿𝐿) (22) 

The first objective is then defined as 𝔽𝔽1(𝕩𝕩) = 𝛼𝛼1𝓂𝓂 + 𝛼𝛼2𝓇𝓇. Based on the design variable, the mass, volume and 
power of each subsystem is calculated and the mass and volume of the payload is calculated as 𝓂𝓂𝑝𝑝𝑝𝑝𝑝𝑝 = 𝓂𝓂−𝓂𝓂𝑠𝑠𝑠𝑠𝑠𝑠, 
𝒱𝒱𝑝𝑝𝑝𝑝𝑝𝑝 = 𝒱𝒱 − 𝒱𝒱𝑠𝑠𝑠𝑠𝑠𝑠, and 𝑃𝑃𝑝𝑝𝑎𝑎𝑦𝑦 = 𝑃𝑃 − 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠, where 𝒱𝒱 = 4𝜋𝜋𝓇𝓇3/3. The payload mass, volume and power ratio are then 
calculated as 𝓂𝓂𝑟𝑟 = 𝓂𝓂𝑝𝑝𝑝𝑝𝑝𝑝/𝓂𝓂, 𝒱𝒱𝑟𝑟 = 𝒱𝒱𝑝𝑝𝑝𝑝𝑝𝑝/𝒱𝒱, and 𝑃𝑃𝑟𝑟 = 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝/𝑃𝑃. The second objective function is then defined as 
𝔽𝔽2(𝕩𝕩) = 1 − (𝛼𝛼3𝑚𝑚𝑟𝑟 + 𝛼𝛼4𝒱𝒱𝑟𝑟). 𝓂𝓂𝑠𝑠𝑠𝑠𝑠𝑠, 𝒱𝒱𝑠𝑠𝑠𝑠𝑠𝑠, and 𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠 are the total mass, volume and power of all the subsystems 
described in section VI, and 𝛼𝛼1, 𝛼𝛼2, 𝛼𝛼3, and 𝛼𝛼4 are weights. The third and fourth objective functions are defined as 
𝔽𝔽3(𝕩𝕩) = 𝑃𝑃 and 𝔽𝔽4(𝕩𝕩) = 1 − 𝑃𝑃𝑟𝑟 . Three constraints are added to the optimization problem. The first three constraints 
are 𝓂𝓂𝑟𝑟 > 0, 𝒱𝒱𝑟𝑟 > 0 and 𝑃𝑃𝑟𝑟 > 0. The fourth constraint is 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 1. The fifth constraint is that the bandwidth of the 
transceiver selected lies within the resonating frequency of the antenna designed. Finally, other constraints can be 
added based on other user defined parameters, (e.g. the clock frequency of the computer selected is greater than a 
user-defined desired clock frequency, storage capacity of the computer selected is greater than a user-defined value 
etc.). The optimization problem is then mathematically formulated as Eq. (23). 

min
 
𝔽𝔽1(𝕩𝕩) = 𝛼𝛼1𝓂𝓂 + 𝛼𝛼2𝓇𝓇

min
 
𝔽𝔽2 (𝕩𝕩) = 1 − (𝛼𝛼3𝓂𝓂𝑟𝑟 + 𝛼𝛼4𝒱𝒱𝑟𝑟)

min𝔽𝔽3(𝕩𝕩) = 𝑃𝑃
min

 
𝔽𝔽4(𝕩𝕩) = 1 − 𝑃𝑃𝑟𝑟

 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 

⎩
⎪
⎨

⎪
⎧
𝔾𝔾1(𝕩𝕩) ≡ 𝓂𝓂𝑟𝑟 > 0
𝔾𝔾2(𝕩𝕩) ≡ 𝒱𝒱𝑟𝑟 > 0
𝔾𝔾3(𝕩𝕩) ≡ 𝑃𝑃𝑟𝑟 > 0
𝔾𝔾4(𝕩𝕩) ≡ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 1

𝔾𝔾5(𝕩𝕩) ≡ 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
(𝐿𝐿) +

𝐵𝐵𝐵𝐵
2

≤ 𝑓𝑓𝑟𝑟(𝑎𝑎𝑎𝑎𝑎𝑎) ≤ 𝑓𝑓𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
(𝑈𝑈) −

𝐵𝐵𝐵𝐵
2

(23) 

Since our problem is a constrained multi-objective problem, the search space is divided into two regions: feasible 
and infeasible regions. Hence, all pareto optimal solutions must also lie in the feasible region. The penalty function 
approach was used to handle the constraints within the objective functions as discussed in Section V. For each solution 
𝕩𝕩(𝑖𝑖), the constraint violation for each constraint are calculated and then added together to get the overall constraint 
violation Ω�𝕩𝕩(𝑖𝑖)�. This constraint violation is then multiplied with a penalty parameter 𝒫𝒫 and the product is added to 
each of the objective functions. Thus, the constrained multi-objective optimization problem is converted into an 
unconstrained multi-objective optimization problem with the 4 cost functions defined as Eq. (24). 

𝒥𝒥𝑘𝑘(𝕩𝕩) = 𝔽𝔽𝑘𝑘(𝕩𝕩) + 𝒫𝒫𝛺𝛺(𝕩𝕩),   𝑘𝑘 = 1,2,3,4 (24) 

 
Fig. 7 System level design variables expressed as a gene for NSGA-II. 

With the 4 cost functions defined, an elitist non-dominated sorting genetic algorithm (NSGA-II) is used to find the 
pareto optimal solutions as discussed in Section 5. For creating the initially random parent population 𝑃𝑃0, the values 
of 𝓂𝓂, 𝓇𝓇 and 𝑃𝑃 are chosen with a uniform distribution 𝓂𝓂 = 𝒰𝒰(𝓂𝓂 (𝑈𝑈),𝓂𝓂 (𝐿𝐿)), 𝓇𝓇 = 𝒰𝒰(𝓇𝓇(𝑈𝑈),𝓇𝓇(𝐿𝐿)), and 𝑃𝑃 =
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𝒰𝒰(𝑃𝑃(𝑈𝑈),𝑃𝑃(𝐿𝐿)), the integer values of 𝑚𝑚𝑚𝑚𝐼𝐼𝐼𝐼, 𝑠𝑠𝑠𝑠1 , 𝑠𝑠𝑠𝑠2, 𝑝𝑝𝑝𝑝𝐼𝐼𝐼𝐼 are chosen at random from the available options, and the 
integer COTS IDs are chosen at random from the COTS inventory.  

IX. Results and Discussion 
This section provides the results of simulations performed for different mission scenarios. The simulation results 

are presented in the form of pareto optimal design solutions for two exploration missions 1) Surface exploration 
mission on Mare Tranquilitatis, and 2) Subsurface exploration mission of Mare Tranquilitatis pit on the surface of the 
Moon. The mission specifications were to explore 1000 meters over a mission lifetime of 5 hours and 3000 meters 
over a mission lifetime of 15 hours respectively. Along with the pareto optimal solutions, the history of selection of 
the mobility and power system is presented that showed the selection of optimal mobility and power system for 
different mission scenarios. To better understand the selection probability of the mobility and power system, a 
comparative analysis is presented for all combinations of propulsive mobility system and power system for varying 
mission exploration requirements. Finally, the performance of the controllers used in designing the robot is presented 
through Monte Carlo simulations. 

A. Test Scenario-1: Surface exploration on Mare Tranquilitatis 
The first simulation was run to perform surface exploration on Mare Tranquilitatis. Mare Tranquilitatis is a lunar 

mare that sits within the Tranquilitatis basin on the Moon at 8.5°N 31.4°E, which was also the landing site for the first 
manned landing on the Moon (Apollo-11) on July 20, 1969. The mission target is to explore 1000m around the Apollo-
11 landing site in 5 hours. The environmental conditions used for the simulations were gravity 𝑔𝑔 = 1.62m/s2, ambient 
temperature 𝑇𝑇𝑎𝑎 = 340 ± 40K, radiation dose rate 𝐼𝐼0 = 100rad/yr, and soil properties of Lunar soil. 

In addition to the constraints discussed in Section VIII, 3 additional constraints based on user-defined parameters 
are added. The clock frequency of the computer should be greater than 500MHz, storage capacity should be greater 
than 1Gbyte, the power board should have at least 3 output channels ranging from 3-15V. For the communication 
system, 5 robots were considered to explore in coordination, and the antenna was designed at 1GHz frequency with 3 
antennas in the array. The bounds on the design variables were 𝓂𝓂 (𝑏𝑏) = [1 8] kg, 𝓇𝓇(𝑏𝑏) = [10 40] cm, 𝑃𝑃(𝑏𝑏) =
[5 30] W. 3 different types of mobility systems and 2 different types of power systems were used in the simulation. 
For the COTS inventory 10 different types of each component were collected from different manufacturers. Fig. 8 
shows the scatter plot matrix of the pareto optimal solutions found after 500 generations with 100 individuals in each 
generation. With 4 objective function, all 6 pairs are plotted.  

Fig. 9(Left) shows the number of individuals in each pareto front and total number of pareto fronts over 
generations. It can be seen that the simulation started with 92 pareto fronts and converged into 1 pareto front after 4 
generations. Fig. 9(Right) shows the spread ∆ of the pareto solutions over generations that shows the extent of spread 
achieved. It can be seen that the spread was close to zero which shows a good distribution. 

 
Fig. 8 Scatter plot matrix of the pareto optimal solutions found after 500 generations with 4 objective functions. 
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Fig. 9 (Left) Number of individuals in each pareto fronts over generations. The number on top of each bar 
shows the total number of pareto fronts in each generation. (Right) Performance measure ∆, that shows the 
extent of spread achieved over 500 generations. 

Fig. 10 shows the mass, volume, and power budget of the robot for the pareto-optimal solutions found. It can be 
seen that the minimum and maximum values of mass, volume and power available for the payload are 𝓂𝓂𝑝𝑝𝑝𝑝𝑝𝑝

(𝐿𝐿) =
0.20, 𝓂𝓂𝑝𝑝𝑝𝑝𝑝𝑝

(𝑈𝑈) = 4.56 kg, 𝒱𝒱𝑝𝑝𝑝𝑝𝑝𝑝
(𝐿𝐿) = 0.00022, 𝒱𝒱𝑝𝑝𝑝𝑝𝑝𝑝

(𝑈𝑈) = 0.0109 m3, and 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝
(𝐿𝐿) = 0.001, 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝

(𝑈𝑈) = 22.81 W. The average 
values of the mass, volume and power available for the payload are 𝓂𝓂�𝑝𝑝𝑝𝑝𝑝𝑝 = 2.27 kg, 𝒱𝒱�𝑝𝑝𝑝𝑝𝑝𝑝 = 0.0056 m3, and 𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝 =
9.04 W over the 100 pareto optimal solutions. Moreover, the average value of the total mass of the robot is 3.9 kg. 

 
Fig. 10 Mass, volume and power budget of the 100 individuals in the pareto front. 

 
Fig. 11 3D visualization models of the designs in the pareto front. From left to right (1) Design 1, (2) Design 

30, (3) Design 71, (4) Design 89, and (5) Design 100. 
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Fig. 12 shows the number of instances, different modes of mobility and power system is selected over generations. 
It can be seen from Fig. 12(Top-Left) that among the three modes of mobility (hopping, rolling, and wheeled), hopping 
is the most efficient one as the other two are rejected within 24 generations. It is also clear from Fig. 12(Top-Right) 
that among three modes of hopping mobility (propulsive, mechanical and reaction-wheel), propulsive hopping is the 
most efficient one as the other two are rejected within 14 generations. Also, among the three propellants used for 
propulsive hopping, steam-propulsion is rejected within 69 generations, while neither RP1/H2O2, nor H2/O2 propulsion 
is rejected as shown in Fig. 12(Bottom-Left). This shows that both the options are viable for this mission scenario. 
Moreover, among the two power systems (battery and fuel cell), neither got rejected making both options viable as 
shown in Fig. 12(Bottom-Right). 

 
Fig. 12 (Top-Left) Number of instances hopping, rolling and wheeled modes of mobility selected over 
generations. (Top-Right) Number of instances propulsive, mechanical and reaction-wheel hopping modes of 
mobility selected over generations. (Bottom-Left) Number of instances H2/O2, RP1/H2O2 and steam based 
propulsive hopping modes of mobility selected over generations. (Bottom-Right) Number of instances fuel cells 
and lithium-ion batteries selected over generations. 
B. Test Scenario-2: Sub-Surface exploration of Mare Tranquilitatis pit 

The second simulation was run to perform sub-surface exploration of Mare Tranquilitatis Pit at 8.33°N 33.22°E. 
Lunar Reconnaissance Orbiter Camera (LROC) images reveal that the pit diameter ranges from 86 to 100m with a 
maximum depth from shadow measures of ~107m and that it opens into a sublunarean void of at least 20meters in 
extent. However, the sublunarean void might extend to a few kilometers in length and so mission specification is to 
explore 1000m of the sublunarean void. The con-ops for performing this mission is shown in Fig.13(Left). A lander 
carrying multiple SphereX robots would descent nearby Mare Tranquilitatis Pit and deploy the robots one by one. 
Each robot will have three phases 1. Surface operation to approach the pit entrance, 2. Pit entrance maneuver, and 3. 
Sub-surface operation to explore the pit. The mission target is to explore 2000m on the surface in 10 hours, 50m in 10 
minutes to enter the pit and 1000m inside the pit in 5 hours as seen in Fig. 13(Right). The environmental conditions 
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used for the simulations were gravity 𝑔𝑔 = 1.62m/s2, ambient temperature 𝑇𝑇𝑎𝑎 = 340K (surface),  𝑇𝑇𝑎𝑎 = 250K (sub-
surface),  radiation dose rate 𝐼𝐼0 = 100rad/yr (surface), 𝐼𝐼0 = 0rad/yr (sub-surface), and soil properties of Lunar soil. 
The constraints and the bounds on the design variables used were same as discussed in Section IX(A). For entering 
the pit, the robot needs a soft-landing maneuver, as such the modes of mobility except for propulsive hopping are unfit 
for this mission scenario. In addition to the three phases discussed for propulsive hopping, the robot has an additional 
soft-landing phase. 

 
Fig. 13 (Left) Concepts of operation for exploring Lunar pits, (Right) Mission exploration requirements for the 
robot to enter the pit and explore. 

 
Fig. 14 Mass, volume and power budget of the 100 individuals in the pareto optimal front. 

Fig. 14 shows the mass, volume, and power budget of the robot for the pareto-optimal solutions found. It can be 
seen that the minimum and maximum values of mass, volume and power available for the payload are 𝓂𝓂𝑝𝑝𝑝𝑝𝑝𝑝

(𝐿𝐿) =
0.20,𝓂𝓂𝑝𝑝𝑝𝑝𝑝𝑝

(𝑈𝑈) = 2.93 kg, 𝒱𝒱𝑝𝑝𝑝𝑝𝑝𝑝
(𝐿𝐿) = 0.00021,𝒱𝒱𝑝𝑝𝑝𝑝𝑝𝑝

(𝑈𝑈) = 0.0104 m3, and 𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝
(𝐿𝐿) = 0.04,𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝

(𝑈𝑈) = 22.20 W. The average values 
of the mass, volume and power available for the payload are 𝓂𝓂�𝑝𝑝𝑝𝑝𝑝𝑝 = 1.82 kg, 𝒱𝒱�𝑝𝑝𝑝𝑝𝑝𝑝 = 0.0047 m3, and 𝑃𝑃�𝑝𝑝𝑝𝑝𝑝𝑝 = 8.6 W 
over the 100 pareto optimal solutions. Moreover, it can be seen that of average value of the total mass of the robot 
increased to 5.8 kg from 3.9 kg in test scenario 1. Fig. 15 shows the number of instances, different modes of mobility 
and power system is selected over generations. Also, among the three propellants used for propulsive hopping, steam-
propulsion is rejected within 48 generations, while H2/O2 propulsion is rejected within 55 generations. This shows 
that RP1/H2O2 propulsion is the fittest mobility option for this mission scenario. Moreover, among the two power 
systems, battery system got rejected within 46 generations, thus making fuel cell power system as the fittest option. 
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From Fig. 12 and 15 it is clear that the selection of mobility and power system depends on the mission exploration 
and mission time goals. 

 
Fig. 15 (Left) Number of instances H2/O2, RP1/H2O2 and steam based propulsive hopping modes of mobility 
selected over generations. (Right) Number of instances fuel cells and lithium-ion batteries selected over 
generations. 

C. Comparative Analysis 
Since, the selection of the propulsive hopping mobility and power system varied across the two mission scenarios 

presented in Section IX(A) and IX(B), a comparative study of the two systems is done for varying exploration distance 
and mission time. For the comparative study, the choice of the avionics was fixed, and the available payload mass, 
volume and power were considered 1kg, 1000cm3, and 10W respectively. As such the problem is expressed as a 
single-objective optimization problem to minimize the mass of the robot with 2 design variables 𝕩𝕩 = [𝓂𝓂,𝓇𝓇]. For each 
design variable, the mass of each subsystem is calculated and then added together to find the total mass of the system 
𝓂𝓂𝑇𝑇. Two constraints were added such that 𝓂𝓂 = 𝓂𝓂𝑇𝑇, and the assembly index 𝐼𝐼𝐼𝐼𝑑𝑑𝑑𝑑𝑑𝑑 = 1. The optimization problem 
is mathematically formulated as Eq. (25). 

min
 
𝔽𝔽(𝕩𝕩) = 𝓂𝓂 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡 �𝔾𝔾1(𝕩𝕩) ≡ (𝓂𝓂−𝓂𝓂𝑇𝑇)2 = 0
𝔾𝔾2(𝕩𝕩) ≡ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 1

(25) 

 
Fig. 16 Mass of the robot for all combinations of propulsive mobility system and power system for varying 
exploration distance and mission time. 
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Multiple simulations were performed for each combination of the propulsive hopping mobility and power system 
to find the optimal mass of the robot for varying exploration distance and mission time on the surface of the Moon. 
Fig. 16 shows the mass of the robot for each combination. It can be seen that for an exploration objective of 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
100 m and Γ = 0.5 hrs, the system with lithium-ion batteries and RP1/H2O2 propulsive mobility is the optimal choice 
with multiple combinations close to each other, however as the exploration objective increases to 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 4000 m 
and Γ = 20 hrs, the system with fuel cells and RP1/H2O2 propulsive mobility is the optimal choice. It can also be seen 
that for each of the propulsive mobility system, the ones with battery system is better than the ones with fuel cells for 
low exploration objectives, but as the exploration objectives increases the ones with fuel cells are far better.  

X. Conclusion 
The report formulated and solved a multidisciplinary optimization (MDO) problem for SphereX, which included 

geometric design along with mobility and temperature control for planetary surface exploration missions. The problem 
was constructed with seven disciplines: mobility system, power system, communication, avionics, thermal, radiation 
shielding and shell which interacted with a COTS inventory for electronics, mobility controller for exploration and a 
thermal controller for maintaining the body temperature of the robot to find optimal design solutions for a specific 
planetary exploration mission. To solve the problem, the AMDCO framework was implemented that used a genetic 
algorithm based multi-objective optimizer at the system level to find the Pareto-optimal results while using gradient-
based optimization techniques at the subsystem level. We have demonstrated that finding the optimal design variables 
associated with all the major disciplines of SphereX for a predefined exploration task is feasible through a rigorous 
multidisciplinary approach. The approach provides a system-level perspective of the problem with sufficient depth to 
capture high-level trade-offs and reveal insights that are perhaps not obvious at the discipline level. The solution 
provides a geometric solution that is useful for ground development of SphereX taking into consideration its 
operational and exploration goals on a target environment. For operational point of view, each of the designs identified 
by the multidisciplinary optimization process needs further research and development. Future work will involve using 
these design solutions to perform path-planning with multiple robots to explore a target environment. In addition to 
that, hardware experimental results will be shown for exploring unknown environments like caves and lava tubes for 
mapping and localization.  
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