
Autonomous Coverage Path Planning using Artificial
Neural Tissue for Aerospace Applications

Byong Kwon
Space and Terrestrial Robotic Exploration Laboratory

University of Arizona
1130 N. Mountain Ave, Tucson, AZ 85721

bykwon@email.arizona.edu

Jekanthan Thangavelautham
Space and Terrestrial Robotic Exploration Laboratory

University of Arizona
1130 N. Mountain Ave, Tucson, AZ 85721

jekan@email.arizona.edu

Abstract—Although many algorithms exist for complete, cov-
erage path planning (CPP) by robots, most algorithms are
not practical for real-world use, as they rely on perfect, prior
knowledge of a static target environment, hardwired path plan-
ning or substantive human interaction, among other things.
Moreover, many algorithms do not consider the real-world
constraints of limited on-board power, computing, memory or
communications, especially for low cost, multi-agent swarms.
For aerospace applications, power-constrained CPP algorithms
are critical because they can impact the effectiveness of future
applications, such as the development of autonomous multi-
robot teams for lunar site-preparation, mining and construction,
or the development of terrestrial multi-robot teams to conduct
visual or x-ray inspections of aircraft bodies. In this paper,
we apply the Artificial Neural Tissue (ANT) control algorithm
[1][2] to solve simulated CPP tasks, where multiple agents coop-
erate and completely or almost completely, cover 2-dimensional,
basic geometric, open grid areas in linear or quasilinear time,
where time complexity is measured by the number of robot
time steps and the open grid cells to cover. In these ANT
simulations, there is no central controller and the agents are
constrained by limited time steps, a priori knowledge of the
target environment, on-board memory and sensors, and no
communications among themselves. However, the ANT agents
do rely on pheromones/markers to track whether a grid cell has
been visited, and receive information from a central station con-
cerning total area coverage, time and global reference directions.
In these CPP tasks, the performance of ANT is comparable to
the best known grid-based, heuristic coverage algorithm with a
quasilinear upper bound cover time [3][4].

TABLE OF CONTENTS

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2. GRID-BASED COVERAGE ALGORITHMS . . . . . . . . . . . . 2
3. ARTIFICIAL NEURAL TISSUE . . . . . . . . . . . . . . . . . . . . . . . 2
4. ANT ROBOT CONTROLLER . . . . . . . . . . . . . . . . . . . . . . . . . 3
5. TEST SIMULATION RESULTS . . . . . . . . . . . . . . . . . . . . . . . . 6
6. DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
7. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
BIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1. INTRODUCTION
The Moon is the first destination in setting up an off-world
base and for extracting critical resources to power a space
economy. Significant deposits of water exist on the Lunar
South and North Pole, but these regions are extremely inhos-
pitable. To access these sites, autonomous and robust robotic
systems are needed. Tele-robotic systems are an option,

but they require large-scale infrastructure and placement of
astronauts at the moon or the Lagrange points to minimize
latency.

In comparison, autonomous robotic systems are a simpler
option, but must operate efficiently at first to be productive.
Coverage path planning (CPP) algorithms are critical because
they can impact the effectiveness of autonomous multirobot
teams in lunar site-preparation, excavation, open-pit mining
and construction.

On Earth, the external visual inspection and internal x-ray in-
spection of aircraft bodies are other demanding tasks that can
benefit from CPP. Typically, humans conduct these tedious
and sometimes dangerous inspections. Small, light-weight
robots that can carry and operate dangerous x-ray scanners
are well-suited for these tasks. Again, one or more robot
teams need to master CPP.

Although many algorithms exist for complete CPP by robots,
most algorithms are not practical for real-world use, as they
rely on perfect, prior knowledge of a static target environ-
ment, hardwired path planning or substantive human interac-
tion, among other things. Moreover, many algorithms do not
consider the real-world constraints of limited on-board power,
computing, memory or communications, especially for low
cost, multi-agent swarms.

In this paper, we apply the Artificial Neural Tissue (ANT)
control algorithm [1][2] to solve simulated CPP tasks, where
multiple agents cooperate and completely or almost com-
pletely, cover 2-dimensional, basic geometric, open grid
areas in linear or quasilinear time, where time complexity is
measured by the number of robot time steps and the open
grid cells to cover. Trained by a simple genetic algorithm,
and inspired by neuromodulation and coarse coding in the
brain, ANT is an artificial neural network controller with a
sparse neural network architecture, with adaptive activation
functions that consist of a linear combination of real-valued
step functions, which can replicate the Boolean XOR function
in a single artificial neuron.

In these ANT simulations, there is no central controller and
the agents are constrained by limited time steps, a priori
knowledge of the target environment, on-board memory and
sensors, and no communications among themselves. How-
ever, the ANT agents do rely on pheromones/markers to track
whether a grid cell has been visited, and receive information
from a central station concerning total area coverage, time
and global reference directions. In these CPP tasks, the
performance of ANT is comparable to the best known grid-
based, heuristic coverage algorithm with a quasilinear upper
bound cover time [3][4].

1
Preprint 2020 IEEE Aerospace Conference



In the following sections, we discuss the theoretical bounds of
well-known grid-based CPP algorithms, highlight the novel
features of ANT, describe the ANT robot controller imple-
mentation, described the simulated CPP tasks and review the
simulated test results.

2. GRID-BASED COVERAGE ALGORITHMS
Grid-based, complete CPP algorithms inspired by ant
pheromones, where a chemical or physical marker indicates
whether a spot has been traversed by an agent, is a well-
studied topic, but few studies analytically prove bounds on
cover times, i.e. the time complexity in the number of grid
cells to visit all cells at least once [4]. Such algorithms are dif-
ficult to use in real-world environments because they assume
static environments that can be discretized into geometric grid
cells, the grid environment is strongly connected, i.e. there
is path from each grid cell to any other grid cell [6] and
predetermined or hardwired path planning. However, these
algorithms are useful benchmarks to evaluate and develop
potential real-world coverage algorithms. Two well-known,
grid-based CPP algorithms that have proven bounds on their
cover times are the Learning Real-Time A* (LRTA*) and
Node Counting algorithms [5]–[9], which are limited, look-
ahead algorithms [6], related to reinforcement learning [5].

In grid-based CPP algorithms, each grid cell is assigned a
binary, heuristic, probabilistic or energy potential value h(v)
that helps determine which direction or grid cell a robot
should next move [10]. To evaluate their cover times, these
algorithms are converted into graph search problems, where
the grid cells are analogous to graph vertices v ∈ V and
the boundaries between adjacent grid cells are analogous to
graph edges e ∈ E(v), where E(v) are all the graph edges
connected to vertex v [10][11].

In Node Counting, the value-update rule for each vertex is
h(v) ← h(v) + 1, where initially all h(v) = 0, and h(v)
is incremented by the value one, every time an agent visits
vertex v [6]. Then, an agent at vertex v moves along edge
e ∈ E(v) to an adjacent vertex v̂ with the lowest value
h(v̂) [6]. In the event of tied lowest values h(v̂), the agent
selects a random adjacent vertex v̂ among these lowest values
[6]. The foregoing move operation is captured by the update
assignment v ← next(v, e) [6]. So, the value h(v) in Node
Counting is solely dependent on local information concerning
vertex v [6].

In LTRA*, the value-update rule for each vertex is h(v) ←
h(next(v, e)) + 1, which means that the value h(v) is de-
pendent on the value of an adjacent vertex v̂ with the lowest
value h(v̂) [6]. Initially, all h(v) = 0 in LTRA*. Since the
value-update rule in LTRA* is a nested function dependent
on next(v, e), the value h(v) implicitly captures non-local
information about the graph (or grid environment), away from
vertex v. Specifically, if the graph has not been searched
completely and unvisited vertices exist, the LTRA* value
h(v) is an estimate of the number of edges (or steps) from
vertex v to the nearest unvisited vertex v∗, where h(v∗) = 0,
and LTRA* causes an agent to move toward that nearest,
unvisited vertex [6]. On the other hand, the Node Counting
value h(v) only provides local information about vertex v and
provides no information beyond its adjacent vertices. The
difference in value-update rules between Node Counting and
LTRA* has a substantial impact on theoretical cover times,

where the LTRA* upper bound cover time is O
(
n2 − n

)
and the Node Counting cover time can be at least Ω

(
n
√
n
)

,
where n is the number of vertices [6]. For an intuitive sense
on why Node Counting possibly can have exponential cover
times, consider the case of an agent searching an open grid
area and then figuratively painting itself into a corner of
visited grid cells, where the nearest unvisited grid cells are
far away. Since the Node Counting value h(v) only captures
local information adjacent to vertex v, a Node Counting agent
can cycle aimlessly among visited vertices before randomly
reaching an unvisited vertex.

Notwithstanding the substantial theoretical difference in
cover times, the empirical performance of the LTRA* and
Node Counting algorithms are comparable in many simulated
scenarios, but it is difficult to predict in advance what scenar-
ios will cause the time complexity of Node Counting time to
become adverse [6]. Accordingly, when the loss of power can
have high, detrimental impacts on a mission or task, Node
Counting algorithms should be avoided for complete CPP
applications.

To our knowledge, the best grid-based, heuristic coverage
algorithm is SWEEP with an upper bound cover time of
O
(
n1.5

)
[3] [4]. However, SWEEP consists of hardwired

path planning and defines rigorous protocols to mange how a
group of cooperative cleaning robots move, pivot, signal and
synchronize to clean a dirty target region [4]. SWEEP only
relies on local sensing, has no prior knowledge of the target
region but guarantees a quasilinear cover time because its
search starts from the exterior boundary of the region, moves
clockwise along the boundary, spirals inwards and avoids
cleaning places that will cause the remaining target region to
become discontinuous [4]. Accordingly, the takeaway from
grid-based CPP algorithms is that robots will need some non-
local sensing capabilities, or need to maintain a continuous,
remaining area to cover, to avoid the possibility of detrimental
cover times, which may cause the loss of power for the robots
in complete CPP applications.

3. ARTIFICIAL NEURAL TISSUE
As describe more fully in [1] [2], ANT is a neural network
control algorithm with a sparse, variable topology neural
network, and adaptive activation functions. In this section,
we highlight the novel features of ANT that allow it to
outperform robotic controllers employing classic artificial
neural networks (ANNs) [1]. Without loss of generality, we
assume that ANT data inputs xi ∈ [−1, 1], neural network
conneciton weights wi ∈ [0, 1] and activation function out-
puts {−1, 1}. However, these values can be other discrete or
continuous Real values. We co-opt from neuroscience, the
terms presynaptic and postsynaptic to indicate which nodes,
i.e. artificial neurons, precede in a chain of node activation
function outputs.

Variable Topology Network

Unlike classic ANNs, which are generally fixed topology,
fully connected, feedforward networks, ANT is a sparse,
variable topology, coarse coding neural network [2]. To
implement this architecture, ANT consists of two neural
networks, the decision and motor networks, which are co-
located in the same 3-dimensional (3D) lattice space. The
role of the ANT decision network is to select motor nodes
that will comprise the ANT feedforward motor network [2].

2



During instantiation, ANT places decision and motor nodes
into lattice cells, which may be co-located in the same lattice
cell, but this is not required, a decision or motor node may be
in a lattice cell independently.

The ANT activation process consists of two parts [2]. First,
all decision nodes, k = 1 . . . p, receive data inputs xi and
yield an activation function output zk ∈ {−1, 1}. If a
decision node yields an excitatory output (e.g. zk = −1
is excitatory), then the decision node figuratively releases a
(chemical) neuromodulator that diffuses equally in all direc-
tions about the decision node, forming a 3D diffusion zone
about the decision node. If several decision nodes diffuse,
likely their diffusion zones will overlap in one or more lattice
cells. The ANT algorithm identifies the lattice cells with
the highest diffusion concentrations (i.e. most diffusion zone
overlaps), and if any motor nodes are located in those cells,
these motor nodes will comprise the ANT feedforward motor
network [2]. This diffusion selection process occurs with
each set of new data inputs xi. So, the number of motor nodes
in, and the topology of the feedforward motor network can
vary with each set of data instances.

A postsynaptic motor node only receives inputs from presy-
naptic motor nodes in a 3×3 lattice cell grid on the prior hid-
den layer, whose central node is adjacent to, and on the same
feedforward axis as the postsynaptic motor node. In classic
ANNs, the postsynaptic node usually is fully connected to
all nodes on the prior hidden layer. Whereas, the ANT
feedforward motor network is sparse because of the diffusion
selection process and the limited number of presynaptic node
outputs that feed into each postsynaptic node.

In the second part of the ANT activation process, the first
layer of the ANT feedforward motor network receives data
inputs xi, the activation function outputs flow through the
network and the last layer of the ANT feedforward motor
network acts as the output layer [2], comparable to a classic
feedforward ANN.

ANT Activation Function

Contrary to classic ANNs that predominately use fixed, con-
tinuous functions, the ANT activation function is a linear
combination of different step functions with trainable param-
eters

Φ(σ) =(1−K1) [(1−K2)Φdown +K2Φup] + · · ·
K1 [(1−K2)Φditch +K2Φmound] (1)

Φdown(σ) =

{
−1, σ ≥ θ1

1, otherwise

Φup(σ) =

{
−1, σ ≤ θ2

1, otherwise

Φditch(σ) =

{
−1,min(θ1, θ2) ≤ σ < max(θ1, θ2)

1, otherwise

Φmound(σ) =

−1, σ ≤ min(θ1, θ2) or
max(θ1, θ2) < σ

1, otherwise

σ =

∑n
i=0 xiwi∑n
i=0 |xi|

where activation function output Φ ∈ {−1, 1}, parameters
K1,K2 ∈ {0, 1} and θ1, θ2 ∈ [0, 1], weighted input σ,
n is the number of presynaptic nodes that feed into the

Table 1. Conditional cases of ANT activation function
output, Eq. 1

K1 K2 Φ(σ)
0 0 Φdown

1 0 Φditch

0 1 Φup

1 1 Φmound

postsynaptic node, node inputs xi ∈ {−1, 1}, x0 = 1,
weights wi ∈ [0, 1] and bias weight w0 ∈ [0, 1] [2]. Given the
dominant (binary) coefficients K1,K2 in (1), Table 1 shows
how the ANT activation function output reduces to one of the
component step function in Equation 1.

4. ANT ROBOT CONTROLLER
The ANT robot controller (ARC) implemented and tested
in this paper substantially followed [2]. The ARC motor
network consisted of three hidden layers, where each layer
can contain a maximum of 20×20 nodes. So, the maximum
number of possible ARC decision and motor nodes is 1,200
nodes each. All decision nodes, and all motor nodes on the
first hidden layer of the feedfoward motor network receive
inputs from the 26 robot sensors in Figure 1.

All parameters constituting an ARC instantiation, or indi-

Figure 1. Breakdown of ARC Sensors

vidual, are contained in a symbolic genome, which consists
of one tissue gene for the individual, one decision gene per
decision node and one motor gene per motor node. Each deci-
sion gene, and motor gene on the first hidden layer, has a total
of 34 trainable parameters, in which 27 are weight parameters
(26 sensor input weights plus one bias weight). All remaining
motor genes each have 17 trainable parameters, in which 10
are weight parameters (9 motor node weights plus one bias
weight). The tissue gene only contains parameters that affect
the genome’s evolution.

Simple Genetic Algorithm

For the simple genetic algorithm (SGA) that optimizes the
trainable ARC parameters, an initial population of 100 ARC
individuals, or genomes, were instantiated randomly. Each
ARC individual (robotic controller) was created by instanti-
ating two seed motor nodes on each hidden layer, and then

3



instantiating adjacent motor nodes on the same hidden layer
to create a 3×3 grid of motor nodes centered about a seed
node. Corresponding to this 3×3 grid, motor nodes on other
hidden layers are instantiated to create a 3×3×3 column of
motor nodes through the feedforward motor network. The
foregoing process is repeated for each seed node. After all
motor nodes are instantiated, decision nodes are instantiated
based on a ratio of the number of decision to motor genes,
which are parameters in the tissue gene.

The SGA maximizes a simple global fitness function, Equa-
tion 3, to train the ARC parameters. The population fitness
score is that of the best individual in the population. Mating
occurs in the population on a rank-based, roulette selection
method, where individuals in the top half of fitness scores
crossover among themselves to create children, then these
genomes under go possible mutation and possible insertion of
new (motor) genes. If a crossover does not occur because the
ANT compatibility criterion is not met, then parent genomes
undergo a mutation rate of 10 to 20 percent to generate
children. After crossover, the mutation rate for genomes
is between one and three percent, and the probability of
insertion of a new (daughter motor) gene is between 25 and
75 percent in each generation.

Simulated CPP Task

Computer simulations of the CPP task consisted of attempts
by a mutli-robot team to completely cover the open grid areas
in Figures 2–7, or Scenarios (a)–(f), respectively, where the
robot time steps were limited. Scenarios (a)–(d) are fixed
square, triangular and circular areas, where robots would start
from fixed locations and directions on the area exteriors. Sce-
narios (e)–(f) are fixed square and circular areas, where robots
would start from fixed locations and random directions, in the
area interiors. In these figures, the yellow cells are obstacles
or boundaries, blue cells are open cells unvisited by a robot,
cyan cells are open cells previously visited by a robot and
cyan cells with a white (or colored) line from the cell center to
its exterior (a direction vector) are cells occupied by a robot.
Any cyan cell with a robot is recognized as an obstacle by
other robots, and more than one robot cannot occupy a cell at
the same time. Each scenario was an independent simulation.
The square and circular scenarios used a team of four robots,
limited to 100 time steps per robot during training, and the
triangular scenario used a team of three robots, limited to 70
time steps per robot during training.

The number of open grid cells were 400, 333 and 210 cells
for the square, circular and triangular areas, respectively. For
the simulations, area coverage and the global fitness function
were defined as

area coverage =
Ubeg − Uend

Ubeg
(2)

global fitness = area coverage · visit award− · · ·
R

Ubeg
· revisit penalty

(3)

where U is the total number of unvisited cells, U subscripts
“beg” and “end” mean at the beginning and end of the simu-
lation, respectively, R is the total number of revisits to cells,
visit award equals 1 and revisit penalty equals 0.5. So, the
maximum global fitness score was 1, which meant complete
coverage of the search area and no cells were revisited by
the robots. If no movement or area coverage occurred in the
simulation, the default global fitness score was −0.5.

Figure 2. Scenario (a) - Exterior square corner

Figure 3. Scenario (b) - Exterior square side

Robot Platform

The ARC computer simulations used a team of identical,
nonholonomic robots to search and train on scenarios (a)–(f).
No central controller existed. All robot team members were
independent agents endowed with the same control algorithm,
i.e. ARC individual. An ARC individual represents a specific
ARC instantiation, and not a robot in a multi-robot team. No
communications between the robots existed and robots were
not explicitly aware of the existence of other robots. Via their
sensors, robots appeared to each other as obstacles. Except
through training, robots had no prior knowledge of the search
environment. A centralized base station existed and main-
tained a global map to provide global reference directions and
area coverage information to the robots. However, the robots
had no mapping algorithm, and except for global reference

4



Figure 4. Scenario (c) - Exterior triangle

Figure 5. Scenario (d) - Exterior cirlce

directions, no access to a map.

During each time step, each robot received 26 robot sen-
sor inputs, in which 23 were on-board sensors that yielded
binary sensor data {−1, 1}, see Figure 1. The remaining
three sensors provided global information from a central
base station that yielded sensor data on the range [−1, 1].
Specifically, Sensor 23 provided each robot its current global
reference direction; Sensor 24 provided the current global
area coverage; and Sensor 26 was a countdown clock that
provided each robot the current percentage of time steps taken
out the maximum allowable steps for each robot.

Figure 6. Scenario (e) - Interior square

Figure 7. Scenario (f) - Interior circle

ARC Output Behaviors

Each ARC motor node is endowed with an output behavior
b = 1 . . . 8, listed in Table 2. To determine a robot’s action,
ARC calculated a weighted behavior score for each output
behavior b, and the robot executed the behavior with the
highest weighted behavior score greater than or equal to 0.5.
In the event of a tie, ARC randomly selected among the tied
behavior scores. For each output behavior b, its weighted
behavior score was based on the activation function outputs
yi of the motor nodes i = 1 . . .mb on the feedforward motor
network output layer with output behavior b,

number of nodes with yi = 1

total number of nodes with yi = {−1, 1}
. (4)

If motor nodes with output behavior b did not exist or had

5



no activation function outputs on the output layer, then the
weighted behavior score for b was null, and output behavior
b was not included in the pool of possible robot actions.
During each time step, ARC first evaluated and executed the
turn in place output behaviors {1, 5, 6, 7, 8}, and then, evalu-
ated and executed the cell move output behaviors {2, 3, 4}.
Furthermore, the robots in a team moved asynchronously,
where the order of which robot moved first, second, third,
etc. were random during each time step. Robot is always

Table 2. ARC Motor Node Output Behaviors

Behavior Motion
1 turn north
2 move northeast
3 move east
4 move southeast
5 turn south
6 turn southeast
7 turn random
8 turn northeast

pointed robot reference east, and motions are relative to
this direction. Moves are one cell displacements, turns are
in place, and “turn random” means a random pick from
behaviors {1, 5, 6, 8}. In each time step, ARC evaluates and
executes a turn behavior first, and then evaluates and executes
a move behavior last.

ARC Training

The ARC populations were trained using a Monte Carlo
approach, where all individuals ran one or more complete
training episode(s) to determine their fitness scores, and this
score was used by a SGA to determine which individuals
crossover and the number of training generations. A complete
training episode is a simulated run to cover the entire search
area in one attempt. Scenarios (a)–(d) used one training
episode per individual per generation. Scenarios (e)–(f)
used four training episodes per individual per generation,
and averaged these training fitness scores to determine an
individual’s training fitness score because the random robot
start directions in these scenarios affected fitness scores. For
each scenario, 100 different populations, each consisting 100
different ARC individuals, were instantiated and trained on
the scenario. Each trained population is called an EA run.

Each EA run was trained for a maximum of 500 SGA genera-
tions. If an ARC population fitness score met or exceeded the
training fitness cutoff of 0.90 to 0.95 for scenarios (a)–(d) or
0.80 for scenarios (e)–(f), for ten generations consecutively,
the EA training run was halted early. Extending the training
past 500 generations did not yield a material difference in
relative fitness scores among the scenarios, or qualitative
difference in the robot paths. The ARC algorithm was written
and tested in Matlab 2018b on a local Windows 10 (64-bit)
workstation with an Intel Xeon (Broadwell) CPU, and trained
on Intel Xeon (Broadwell) university clusters using Matlab C
executables (.mex) generated with GCC 6.3.0 compilers and
Matlab 2018b or 2019a on these clusters.

5. TEST SIMULATION RESULTS
After the ARC training, the final evolved ARC populations
were tested on their scenarios to establish baseline test results.
For these results, all ARC individuals in a population ran four
test episodes in their scenario, these test fitness scores were
averaged to determined an individual’s fitness score and the
population fitness score was that of the best individual in the
population. The mentions of ARC individuals or solutions
hereafter, refer to these best individuals.

Each scenario had 100 EA test runs and Table 3 summarizes
the baseline test results. In this table, the column titled “Total
steps” is the maximum allowable time steps per robot times
the number of robots. The square and circular scenarios used
a team of four robots, where each robot was limited to 100
time steps, and the triangular scenario used a team of three
robots, where each robot was limited to 80 time steps.

Scenarios with Exterior Start Positions

For scenarios (a)–(d), where robots started from the area
exteriors, some ARC solutions provided complete or nearly
complete area coverage, with global fitness scores in the mid-
0.90s or better. In scenario (a), where robots started from
the corners of an open square area, ARC produced solutions
with complete area coverage in linear time, where time com-
plexity was measured by the total robot time steps needed
to cover the open grid cells. In this scenario, robot start
locations and directions were fixed, robots in the northwest
and northeast corners pointed toward each other, and robots
in the southwest and southeast corners also pointed toward
each other. The ARC solutions with complete area coverage
changed the robot directions to all move in the same direction
and spiral inward to cover the entire square. In scenario (a),
the asynchronous robot movements did not affect the solution
paths or stability of the fitness scores among the test episodes.

In scenario (b), where robots started on the exterior sides of an
open square, ARC produced a stable solution with complete
area coverage and a fitness score of 0.99, in linear time. In this
ARC solution, robots also spiraled inward to cover the entire
square. However, other ARC solutions in this scenario were
unstable and produced volatile fitness scores. For example,
two test episodes of one ARC solution, had fitness scores
of 0.94 and 0.74, respectively. In these cases, the robots
first moved along the exterior boundary of the square, moved
toward the center of the square and then attempted to partition
the square area into quadrants. However, the asynchronous
robot movements affected whether the robots successfully
crossed paths in the center to establish the quadrants, and
caused the fitness score difference above.

In scenario (d), where robots started from the exterior of an
open circular area, some ARC solutions had nearly complete
area coverage of 0.96 and fitness scores of 0.95, in quasi-
linear time. In these solutions, the robots followed the
exterior boundary and spiraled inward to fill the area. Another
ARC solution had area coverage of 0.96 but lower fitness
score of 0.89, in which the robots followed straight paths to
fill the circular area and left some grid cells on the boundary
unvisited.

In scenario (c), where robots started from the exterior of a
triangular area, ARC yielded solutions with complete area
coverage and fitness scores of 0.92 and 0.99, in quasi-linear
time. The fitness score difference is due to the difference on
how the ARC solutions maneuvered robots at the southern
triangle corner.

6



Table 3. ARC Baseline Test Results

Test results for 100 evolutionary algorithm (EA) runs for each scenario. The table column “Beginning Unvisited” is the number
of open cells to cover, “Total steps” is the maximum allowable time steps for each robot times the number of robots, “Std” is
standard deviation and “>=80%” means the number of EA runs with results greater than or equal to 0.80. Visit award equals
1 and revisit penalty equals 0.50 for the global fitness function.

Scenarios with Interior Start Positions

In scenarios (e)–(f), where robots started from the area inte-
riors, the area coverage and global fitness scores were lower
than the other scenarios. However, some ARC solutions in
scenarios (e)–(f) yielded valuable initial paths to cover the
areas. In these scenarios, the robot start locations were fixed
but the start directions were random. In scenario (e), where
robots started from the interior of an open square area, the
best ARC solutions provided area coverage of about 0.90
and fitness scores in the mid-0.80s. Encouragingly, these
ARC solutions caused robots to spiral outward and created
rectangles of visited (cyan) cells in the center of the square
area. When robot start directions were not perpendicular to
the square boundaries, the robots attempted path adjustments
to form such rectangles. When a robot did not make such
adjustments, the robot created a diamond pattern with visitied
(cyan) and unvisited (blue) cells, which negatively impact
area coverage and fitness scores.

In scenario (f), where robots started from the interior of an
open circle, the best ARC solutions did not yield paths similar

to scenario (e). Instead, the ARC solutions caused the robots
to move to the exterior boundary of the circular area, and
spiral inward or criss-cross the circular area, which resulted
in area coverage of 0.85 and 0.91, and fitness scores of 0.80
and 0.81, respectively.

6. DISCUSSION
The test results align with the takeaways in Section 2 about
the LTRA*, Node Counting and SWEEP algorithms. Com-
parable to SWEEP, ARC solutions that started from the ex-
terior of a search area and spiraled inward, scenarios (a)–(d),
performed better than those that started from area interiors,
scenarios (e)–(f). When ARC solutions began from area
interiors, chances increased that robot paths would create dis-
continuous search areas. Notwithstanding the foregoing, the
ARC solution in scenario (e) may be valuable when combined
with the ARC solutions in scenarios (a)–(d). For example,
a multi-robot team could run a primary, complete CPP task
by spiraling into the target area. After this is completed,
the multi-robot team can run a secondary, complete CPP

7



task, with about 90% area coverage, by spacing themselves
evenly in the target area, and spiraling outward. In this case,
the secondary task should have a time step limit to prevent
wasting power on inefficiently covering the last 10% of the
area. This remaining 10% area can be covered by the same
robots re-calibrated for this specific task, or under human
control.

7. CONCLUSION
In summary, robotic controllers based on the ANT control
algorithm provided in some cases, nearly complete area
coverage in quasi-linear time, and other cases, complete area
coverage in linear time, in computer simulations on open,
basic geometric grid areas, where searches began from area
exteriors. This performance was comparable to theoretical
cover time bounds of the best grid-based, area coverage
algorithm. Furthermore, ANT achieved these results with no
central controller, no communications among the robots, no
mapping algorithm, no hardwired path planning and limited
on-board power, memory and sensors.

REFERENCES
[1] Thangavelautham, J., DEleuterio, G. (2012, April). Tack-

ling learning intractability through topological organiza-
tion and regulation of cortical networks. IEEE Transac-
tions on Neural Network and Learning Systems, 23(4),
552 - 564.

[2] Thangavelautham, J., Law, K., Fu, T., Samid, N., Smith,
A., DEleuterio, G. (2017, January). Autonomous mul-
tirobot excavation for lunar applications. Robotica, 35
(12), 23302362. Retrieved from https://doi.org/10.1017/
S0263574717000017.

[3] Altshuler, Y., Bruckstein, A. (2010). The complexity of
grid coverage by swarm robotics. In M. Dorigo (Ed.),
Swarm intelligence: 7th international conference, ants
2010 (p. 536543). Springer Berlin Heidelberg.

[4] Altshuler, Y., Pentland, A., Bruckstein, A. (2018).
Swarms and network intelligence in search. In (Vol. 729,
p. 15-49). Springer.

[5] Barto, A. G., Bradtke, S. J., Singh, S. P. (1995). Learning
to act using real-time dynamic programming. Artificial
Intelligence, 72(1), 81138.

[6] Koenig, S., Szymanski, B., Liu, Y. (2001, October).
Efficient and inefficient ant coverage methods. Annals of
Mathematics and Artificial Intelligence, 31(1), 4176.

[7] Korf, R. E. (1990, March). Real-time heuristic search.
Artificial Intelligence, 42(2-3), 189211.

[8] Pirzadeh, A., Snyder, W. (1990). A unified solution to
coverage and search in explored and unexplored ter-
rains using indirect control. In IEEE International con-
ference on robotics and automation proceedings (Vol. 3,
p. 21132119).

[9] Szymanski, B., Koenig, S. (1998). The complexity of
node counting in unidrected graphs (Tech. Rep. No. CS-
98-02). Department of Computer Science, Rensselaer
Polytechnic Institute.

[10] Galceran, E., Carreras, M. (2013, December). A survey
on coverage path planning for robotics. Robotics and
Autonomous Systems, 61, 12581276.

[11] Choset, H., Lynch, K., Hutchinson, S., Kantor, G.,

Burgard, W., Kavraki, L., Thrun, S. (2005). Principles
of robot motion. Cambridge, MA: MIT Press.

BIOGRAPHY[

Byong Kwon is a US Intelligence Com-
munity Postdoctoral Research Fellow
working on autonomous multi-robot sys-
tems and applied artificial intelligence,
with a focus on bio-inspired and evolu-
tionary algorithms. Prior to SpaceTREx,
BK was a USAID-Arizona State Uni-
versity (ASU) Global Development Re-
search Scholar in Colombia (May 2017
April 2018) engaged in humanitarian

demining research. In December 2019, BK will receive
his PhD in Applied Mathematics for the Life and Social
Sciences from ASU. Prior to ASU, BK obtained his Bachelor
(2012) and Master (2015) of Sciences in Mathematics at
George Mason University in Fairfax, Virginia, with a focus
on nonlinear optimization and machine learning.

Jekanthan Thangavelautham has a
background in aerospace engineering
from the University of Toronto. He
worked on Canadarm, Canadarm 2 and
the DARPA Orbital Express missions at
MDA Space Missions. Jekan obtained
his Ph.D. in space robotics at the Uni-
versity of Toronto Institute for Aerospace
Studies (UTIAS) and did his postdoc-
toral training at MIT’s Field and Space

Robotics Laboratory (FSRL). Jekan Thanga is an assistant
professor and heads the Space and Terrestrial Robotic Explo-
ration (SpaceTREx) Laboratory at the University of Arizona.
He is the Engineering PI on the AOSAT I CubeSat Centrifuge
mission and is a Co-Investigator on the CatSat 1 CubeSat
mission.

8


