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DECENTRALIZED SPACECRAFT SWARMS FOR  
INSPECTION OF LARGE SPACE STRUCTURES 

Byong Kwon,* Jekan Thangavelautham†  

The emergence of increasingly sophisticated and modular small satellites is ex-
pected to enable in-space assembly of large space observatories, space infrastruc-
ture, such as propellant depots and communication relays, and larger modular in-
terplanetary spacecraft.  The key is the modular assemble of these space architec-
tures that enables quick assembly of more capable structure and spacecraft with 
longer range to reach unexplored planetoids, moons, and asteroids in the outer 
solar system. A key task to assembling small modular structures into a larger 
structure is the need for careful verification to ensure all the pieces are locked in 
place.  Attempts to minimize or eliminate the use of human astronauts for such 
tasks would be a major technological achievement and welcome simplification of 
the overall complexity of the system. In this paper, we present a neural network 
robotic controller, the Artificial Neural Tissue (ANT), to perform decentralized 
control of multiple robots for optimal area coverage of large structures. With this 
robotic controller, there is no supervisor or hierarchy among the robots. In com-
puter simulations, robots can achieve near-optimal parallelism, where increasing 
the number of robots, n, allows the task to be completed in T1/n time, where T1 is 
the time for one robot to complete the entire task. The robotic controllers are 
evolved using Darwinian methods in simulation. The fittest controllers can then 
be tested in high-fidelity simulations or on robotic hardware. To date, our simu-
lation results show the controller enabling multiple robots to self-assign different 
regions for different robots and thus minimizing covering the same area twice by 
a single, or multiple robots. The simulations have been extended to various shape 
primitives including rectangular, square, circular and triangular areas. We find the 
controllers being able to repeatedly find optimal or near-optimal solutions without 
requiring human supervision.  In fact, some of the solutions could be considered 
human competitive as they match or exceed human capabilities in solving the 
problem. Our next steps are to demonstrate the controllers using high-fidelity dy-
namics simulators, followed by demonstrations on robotic hardware in laboratory. 

INTRODUCTION 

In-space assembly of small modular structures into larger structures, such as space observato-
ries, propellant depots, communication relays, and larger modular interplanetary spacecraft is an 
important capability for future space missions. A key task to enable in-space assembly is careful 
inspections of large structures to ensure that the modular components are connected and locked 
properly, in place. Given the overall complexity of constructing such large structures, automated 
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inspections by a robot or spacecraft swarms will simplify construction and allow mission planners 
to re-allocate human astronauts or tele-operators to critical tasks that cannot be automated. 

In this paper, we present the Artificial Neural Tissue (ANT), a neural network robotic controller 
for optimal area coverage of large structures by a decentralized, multi-agent swarm.1,2 Specifically, 
we present computer simulations, where an ANT multi-agent swarm completely, or near com-
pletely, covers 2-dimensional (2D), basic geometric, open grid areas in linear or quasi-linear time, 
where time complexity is measured by the number of open grid cells to cover and agent time steps. 
ANT is an artificial neural network (ANN) that simulates neuromodulation to create a sparse, var-
iable neural network topology and employs an adaptive activation function, with trainable param-
eters.1,2 

In the ANT swarm, no central controller exists. The agents do not communicate among them-
selves, do not have a map, and are not aware of the existence of other agents. An agent appears as 
an obstacle via the robot/spacecraft sensor. From a central station, the agents receive global infor-
mation about time, reference directions and total area coverage. The agents do rely on phero-
mones/markers to track whether a module or location in the target structure has been inspected or 
covered. In the ANT computer simulations, the agents are constrained by a limited number of time 
steps, and have no a priori knowledge of the target environment or structure.  All the foregoing 
features simulate a multi-agent swarm with limited, on-board power, computing, memory and sen-
sors. 

In the following sections, we describe ANT’s novel features, the swarm controller implementa-
tion, swarm simulations and test results. 

 

ARTIFCIAL NEURAL TISSUE 

In this section, we highlight the novel features of ANT that allow it to outperform classic ANN 
controllers.1 Without loss of generality, we assume that agent data/sensor inputs  𝑥𝑥𝑖𝑖  ∈ [−1,1], neu-
ral network connection weights 𝑤𝑤𝑖𝑖  ∈ [0,1] and activation function outputs {−1,1}. These values 
can be other discrete or continuous Real values. We use the terms presynaptic/postsynaptic to in-
dicate which nodes (i.e. artificial neurons) precede/follow, respectively, in a feedforward neural 
network. 

Simulated Neuromodulation 

ANNs with simulated neuromodulation have performed well in small-scale, robotic control 
problems.1,2,3,4,5 Inspired by neuromodulation in the brain, ANT simulates the release of (chemical) 
neuromodulators in the neural network layers to determine which nodes comprise the feedforward 
(motor) neural network that generates the agent output behavior.2 The ANT neural network layers 
consist of two types of nodes, the decision and motor nodes, which are located in the same 3D 
lattice constituting the neural network layers.2 The neural network activation process consists of 
two steps. First, all decision nodes receive data/sensor inputs. In our simulations, each spacecraft 
(i.e. agent) has 26 sensors. If a decision node is excited (e.g. has an activation function output of -
1), then the decision node releases a figurative chemical neuromodulator that envelopes the deci-
sion node in 3D diffusion zone. If several decision nodes become excited, then their diffusion zones 
will overlap, and certain lattice cells in the neural network will have high neuromodulator concen-
trations. If a motor node is in such a lattice cell, then that motor node comprises the feedforward 
(motor) neural network that generates the agent output behavior.2 Like a traditional feedforward 
neural network, all motor nodes in the input layer receive data/sensor inputs, the activation function 
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outputs flow through the feedforward (motor) neural network and the output layer nodes generate 
the agent output behavior. 

Each motor node is endowed with one of eight possible output behaviors listed in Table 1. A 
simple weighted average scheme of output layer nodes’ behaviors determines the agent output be-
havior.2 The highest weighted average behavior equal to, or greater than a threshold value of 0.5 is 
executed. If the agent output behavior is both a turn behavior {1,5,6,7,8} and move behavior 
{2,3,4}, the turn behavior is executed first. The agent assumes that it is always pointed (agent) 
reference direction east, and the behaviors in Table 1 are relative to this agent reference direction.  

Since different decision nodes can excite during each new set of sensor inputs, different motor 
nodes can comprise the feedforward (motor) neural network. Hence, the simulated neuromodula-
tion generates a sparse and variable (motor) neural network topology.2 

 
Table 1. Motor Node Output Behaviors. 

Behavior Motion 
(relative to agent reference direction) 

1 turn north 

2 move northeast 

3 move east 

4 move southeast 

5 turn south 

6 turn southeast 

7 turn random {S,SE,N or NE} 

8 turn northeast 

 

Adaptive Activation Function 

The ANT activation function is a linear combination of four step functions shown in Figure 1, 
and defined more fully in Equation (1) below 2, 

 

 𝛷𝛷(𝜎𝜎) = (1 − 𝐾𝐾1)�(1− 𝐾𝐾2)𝛷𝛷𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑  +  𝐾𝐾2𝛷𝛷𝑢𝑢𝑢𝑢�+  𝐾𝐾1[(1 −𝐾𝐾2)𝛷𝛷𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑ℎ + 𝐾𝐾2𝛷𝛷𝑚𝑚𝑑𝑑𝑢𝑢𝑑𝑑𝑑𝑑 ]   (1) 

 

𝜎𝜎 =  
∑ 𝑥𝑥𝑖𝑖 𝑑𝑑
𝑖𝑖=0 𝑤𝑤𝑖𝑖
∑ |𝑥𝑥𝑖𝑖 |𝑑𝑑
𝑖𝑖=0

 

 

where activation function output Φ ∈ {−1,1}, step functions Φ𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑,Φ𝑢𝑢𝑢𝑢,Φ𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑ℎ,Φ𝑚𝑚𝑑𝑑𝑢𝑢𝑑𝑑𝑑𝑑 are 
shown in Figure 1, trainable parameters 𝐾𝐾1,𝐾𝐾2  ∈ {0,1} and 𝜃𝜃1,𝜃𝜃2  ∈ [0,1], weighted input 𝜎𝜎, 𝑛𝑛 is 
the number of presynaptic nodes into the postsynaptic node, node inputs 𝑥𝑥𝑖𝑖  ∈ [−1,1], 𝑥𝑥0 = 1, 
weights 𝑤𝑤𝑖𝑖 ∈ [0,1] and bias weight 𝑤𝑤0 ∈ [0,1].2 Given the binary parameters 𝐾𝐾1,𝐾𝐾2 dominant in 
Equation (1), the activation function output Φ reduces, and is equal to one of the component step 
functions in Figure 1. 
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Swarm Controller Implementation 

The ANT swarm controller implemented in this paper substantially follows the robotic control-
ler in Reference 2. The ANT swarm controller consisted of 3 neural network layers, where each 
layer could contain a possible maximum of 20 × 20 nodes, or a possible total maximum of 1,200 
decision nodes and motor nodes in the neural network layers. The initial number of decision and 
motor nodes is instantiated randomly. 

 

 
 

      
 

Figure 1. Component Step Functions for ANT Activation Function 

 

All postsynaptic motor nodes can receive a maximum of 9 presynaptic node outputs from a 3 × 
3 grid of motor nodes on the prior feedforward (motor) neural network layer, whose center motor 
node aligns on the same axis as the postsynaptic motor node. All decision nodes and all input layer 
motor nodes receive data/sensor inputs from the 26 sensor inputs listed in Table 2. 
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An ANT swarm controller is instantiated randomly and trained/optimized by a simple genetic 
algorithm (SGA). All trainable parameters for a controller (or an individual) are contained in a 
symbolic genome.2 The genome contains one decision gene per decision node, where each decision 
gene contains 34 trainable parameters total, in which 27 are weight parameters for the sensor inputs. 
Also, the genome contains one motor gene per motor node, where each motor gene for each input 
layer motor node contains 34 trainable parameters total (like a decision gene), and each motor gene 
for the remaining motor nodes contains 17 trainable parameters total, in which 10 are weight pa-
rameters for the presynaptic node outputs. A tissue genome exists for a population of controllers 
(or individuals) and contains parameters that determine how the SGA evolves the genome. A pop-
ulation contains 100 randomly instantiated controllers (or individuals). An evolutionary algorithm 
(EA) run means a population that has been trained or tested. 

The SGA used a Monte Carlo approach, where the swarm attempts to complete an entire cover-
age/inspection task in one attempt and calculates a fitness score for this attempt. The SGA used a 
rank-based, roulette selection method to mate (i.e. crossover) individuals among the top half of all 
fitness scores. The resulting children may undergo possible mutation (one to three percent mutation 
rate) and possible insertion of a new (daughter) motor genes at a rate of 25 to 75 percent in each 
generation. If mating/crossover does not occur between two individuals (in the top half of fitness 
scores due to a crossover criterion2), the parent genomes mutate at a rate of 10 to 20 percent to 
generate children. The population fitness score is the best fitness score among the 100 individuals 
in the population. To simulate the coverage/inspection of a large space structure, a team of identical 
(nonholonomic) agents are endowed with the same ANT swarm controller and attempt the follow-
ing tasks. 

SWARM COMPUTER SIMULATION 

For a team of homogeneous agents, the simulated task is to cover the 2D open grid areas in 
Figures 2 – 7, as completely and efficiently as possible. Except for the triangular grid area in Figure 
4 with three agents, all other figures use a team of four agents to cover the target area. 

In these figures, the blue cells are unvisited open cells, the yellow cells are boundaries, and the 
cyan cells with colored quivers are cells with agents at their start positions. The direction of the 
quiver from the cell center to the exterior is the direction of the agent. An agent always assumes to 
be pointed (agent) reference direction east, and only one agent can be in a cell at any time. When 
an agent moves from one cell to another, the prior cell becomes cyan to indicate that the cell has 
been covered/visited by an agent. 

Area coverage and the global fitness score are defined as 

 

 area coverage = 𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏 − 𝑈𝑈𝑏𝑏𝑒𝑒𝑒𝑒
𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏

      (2) 

global fitness score = area coverage · visit award  −  𝑅𝑅
𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏

 · revisit penalty 

 

where 𝑈𝑈𝑏𝑏𝑏𝑏𝑏𝑏 is the number of beginning unvisited open cells, 𝑈𝑈𝑏𝑏𝑑𝑑𝑑𝑑 is the number of ending unvisited 
open cells, 𝑅𝑅 is the total number of cells revisited by the agents during the task, visit award = 1 and 
revisit penalty = 0.5. A maximum possible fitness score of 1.0 means that the swarm (or team of 
agents) covered the target area completely and as efficiently as possible (i.e. with no cells revisited). 
If the agents did not move in the simulated task, the default fitness score was -0.5. 
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During each time step, each agent received the 26 sensor inputs listed in Table 2, where on-
board sensors provided 23 sensors inputs with binary values {-1,1}, and a central base station pro-
vided 3 sensor inputs with continuous values [-1,1]. 

 
Table 2. Data/Sensor Inputs to Agent. 

 
Sensor(s) Sensor data 

1-8 Short-range obstacle detector {-1,1} 

9-16 Short-range visit detector {-1,1} 

17-19 Long-range front obstacle radar {-1,1} 

20-22 Long-range front visit radar {-1,1} 

23 Agent global reference direction [-1,1]  

24 Total global area coverage [-1,1] 

25 One-bit memory, prior obstacle encountered {-1,1} 

26 Percentage of maximum allowable steps taken [-1,1] 

 
 
During each training generation, the swarm attempts to cover the target area in one attempt. The 

number of allowable time steps per agent was limited to force the SGA to find a solution with the 
lowest complexity with respect to the number of open grid cells to cover and agent time steps. 
During each time step, the order of which agent moved first was random. 

Each EA run was trained for a maximum of 500 SGA generations on Figures 2 – 5 and 1000 
generations in Figures 6 and 7. If a population fitness score exceeded for ten generations a fitness 
threshold of 0.90 to 0.95, training was halted early. The swarm simulation was written and tested 
in Matlab 2019a on a local Windows 10 (64-bit) workstation with an Intel Xeon CPU, and trained 
on Intel Xeon university clusters, using Matlab C executables (.mex) generated with GCC 6.3.0 
compliers. 

 

                
  Figure 2. Square Area with Agents in Corners.             Figure 3. Square Area with Agents at Sides. 
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Figure 4. Triangular Area with Agents in Corners.             Figure 5. Circular Area with Agents at 

                    3, 6, 9, 12 O’Clock 
 

                     
Figure 6. Barbell Area with Agents in Corners             Figure 7. Cross Area with Agents at Ends 

 

SIMULATION TEST RESULTS 
 

Using the final evolved populations trained by the SGA, Table 3 presents the baseline test results 
for 100 EA test runs on each figure. The Table 3 columns titled Agents, Open Cells, Total Steps 
mean, respectively, the number of agents/spacecraft in the swarm, the beginning number of unvis-
ited open grid cells to cover (exclusive of the cells occupied by agents at their starting positions) 
and the number of agents times the number of time steps allowed for each agent in the simulation. 
The Area Coverage and Global Fitness Score values are defined by Equation (2). 

On each figure (or grid area), the total number of time steps by the swarms were limited in 
testing (as in the training episodes) to model limited on-board power for the agents. Except for the 
circular area (Figure 5) and the barbell area (Figure 6), the ANT swarms covered the grid areas 
completely. For the circular area (Figure 5) with 329 unvisited open cells at the beginning, only 13 
unvisited open cells remained at the end of the simulation. For the barbell area (Figure 6) with 264 
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unvisited open cells at the beginning, only 2 unvisited open cells remained at the end of the simu-
lation. 

Except for the circular (Figure 5), barbell (Figure 6) and cross (Figure 7) grid areas with quasi-
linear times, the ANT swarms achieved essentially, linear time complexity, with respect to the 
number of open cells to cover and agent time steps. The ANT swarms on the barbell and circular 
areas produced the lowest fitness scores of 0.95 because the agents needed to revisit some open 
cells or turned in-place to cover these grid areas, similarly on the cross grid area. On all these 
figures, the swarms coordinated to move in the same clockwise/counterclockwise direction along 
the area exteriors and spiraled inwards. For example, see Figures 8 and 9 for the barbell and cross 
areas, respectively, at time steps number 17 and 14 (for each swarm agent), respectively. For the 
barbell area, notice in Figure 6 that the agents begin pointed toward each other and in Figure 8, the 
agents are moving clockwise about the area exterior. 

 
Table 3. ANT Swarm Area Coverage Results Over 100 EA Runs 

 
Grid Area Agents Open 

Cells 
Total 
Steps 

Area Coverage 
Mean Medium Std. Max. Min. 

Square 
Figure 2 

4 396 400 0.96 0.98 0.04 1.0 0.70 

Square 
Figure 3 

4 396 400 0.92 0.92 0.05 1.0 0.75 

Triangular 
Figure 4 

3 207 240 0.78 0.90 0.23 1.0 0.27 

Circular 
Figure 5 

4 329 400 0.88 0.89 0.06 0.97 0.67 

Barbell 
Figure 6 

4 264 280 0.86 0.91 0.15 0.99 0.28 

Cross 
Figure 7 

4 175 200 0.77 0.74 0.10 1.0 0.51 

 
 
 

Table 4. ANT Swarm Fitness Scores Over 100 EA Runs 

 

Grid Area Agents Open 
Cells 

Total 
Steps 

Global Fitness Score 
Mean Medium Std. Max. Min. 

Square 
Figure 2 

4 396 400 0.95 0.97 0.05 1.00 0.65 

Square 
Figure 3 

4 396 400 0.88 0.88 0.07 0.99 0.64 

Triangular 
Figure 4 

3 207 240 0.74 0.84 0.24 0.99 0.26 

Circular 
Figure 5 

4 329 400 0.82 0.86 0.09 0.95 0.49 

Barbell 
Figure 6 

4 264 280 0.85 0.91 0.15 0.95 0.26 

Cross 
Figure 7 

4 175 200 0.69 0.64 0.13 0.98 0.47 
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Figure 8. Agents at Time Step 17 in Barbell Area      Figure 9. Agents at Time Step 14 in Cross Area 
 
 
CONCLUSION 
 

In summary, we presented computer simulations of the ANT controller that can coordinate a 
swarm of identical agents to cover 2D basic geometric shapes completely, or near completely, in 
linear or quasi-linear time complexity, with respect to the number of open grid cells to cover and 
the agent time steps. Although many swarm algorithms exist, most of these algorithms are not 
practical for real-world use because they need substantial human intervention, rely on hardwired 
path planning, and cannot operate under the real-world constraints of limited on-board power, com-
puting, memory and sensors. Also, many algorithms rely on a central controller. 

On the other hand, the ANT swarm controller is decentralized and can operate with limited on-
board power, computing, memory and sensors, and achieve near optimal area coverage in computer 
simulations. Hence, ANT is an attractive controller to consider for spacecraft swarms to automate 
the inspection of large structures assembled in space. Given the ANT swarm results, we hope in 
the future to conduct high fidelity dynamics simulations, followed by demonstrations on robotic 
hardware in laboratory. 
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