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Abstract. A developmental Artificial Neural Tissue (ANT) architec-
ture inspired by the mammalian visual cortex is presented. It is shown
that with the effective use of gene regulation that large phenotypes in
the form of Artificial Neural Tissues do not necessarily pose an impedi-
ment to evolution. ANT includes a Gene Regulatory Network that con-
trols cell growth/death and activation/inhibition of the tissue based on a
coarse-coding framework. This scalable architecture can facilitate emer-
gent (self-organized) task decomposition and require limited task specific
information compared with fixed topologies. Only a global fitness func-
tion (without biasing a particular task decomposition strategy) is speci-
fied and self-organized task decomposition is achieved through a process
of gene regulation, competitive coevolution, cooperation and specializa-
tion.

1 Introduction

Evolving open-ended variable-length neural systems with large phenotypes re-
mains a significant challenge in the field of Alife [20,8]. One of the problems
encountered with large phenotypes is the bootstrap problem [18]. The bootstrap
problem occurs when the EAs are unable to pick out incrementally better solu-
tions for crossover and mutation resulting in premature stagnation of the evo-
lutionary run. The answer to the evolution of controllers for complex problems
has often been to introduce more supervision ad hoc, where the experimenter de-
composes a complex task into a set of simpler tasks based on domain knowledge
of the task at hand. In biological systems, such intervention (more supervision)
does not always exist, yet these systems can adapt and thrive with relative ease.

Other techniques involve starting with a single cell or a small phenotype and
allowing for the system to grow in size and complexity until the system can find
a satisfactory solution to a given task [14]. However in biological systems, often
there exists a brain that may already have the neural capacity (brain size) to
adapt easily to a new task/scenario. In such circumstances, starting over with a
minimalist system may be a much slower process owing to the over-reliance of
topological growth directed by evolution.

Taking inspiration from the mammalian visual cortex, we have developed an
evolvable Artificial Neural Tissue (ANT) model. The genotype for the evolvable
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ANT defines a developmental program that constructs a neural tissue (pheno-
type) and associated gene-regulatory functionality. The variable-length tissue
architecture can be characterized as a lattice of neurons arranged in a three-
dimensional (3-D) structure. A Gene Regulatory Network (GRN) controls cell di-
vision and cell death in the tissue, activates/inhibits portions of the tissue based
on external sensory input using a coarse-coding framework and express/repress
other characteristics based on gene-protein interactions.

We empirically compare the training performance (using evolutionary algo-
rithms) of various controllers for the multirobot tiling pattern formation task
(similar to a segment of the termite nest building task [4]),variant of the photo-
tactic task (with obstacles and robot equipped with a gripper) and a relatively
difficult sign-following task that requires use of memory. Each of these tasks re-
quires the evolution of emergent (self-organized) task decomposition strategies
to complete the task successfully. Only a global fitness function (without biasing
a particular task decomposition strategy) is used; the intention is for the con-
trollers to evolve innovative techniques in decomposing the global task into a set
of ‘local” subtasks.

2 Related Work

Traditional machine learning methods for task decomposition involve the su-
pervisor decomposing the task and training separate ‘expert networks’ on the
subtasks [12]. Arbitration among the expert networks is performed using a coop-
erative (Product of Experts model) [10] or competitive mixture of experts model
[12,17]. The gating function and the expert networks are trained separately and
the network topology is predetermined by the experimenter.

Our previous work took this approach to the next step, where decision neu-
rons (acting like gating functions) and expert networks were evolved together
(Binary Relative Lookup architecture) using a global fitness function [21]. We
found larger BRL architectures (with more expert networks) tend to evolve faster
than comparable smaller ones for the tiling pattern formation task. The decision
neurons learned to limit the number of expert networks used thus preventing
problems in over segmentation (over-fitting) to many expert networks.

NEAT (NeuroEvolution of Augmenting Topologies) showed the potential ad-
vantage of evolving both the neuron weights and topology concurrently [13]. It
is argued that growing the network incrementally (‘complexification’) serves to
minimize the dimensional search space and thus improve evolutionary perfor-
mance. ANT is even more flexible and can be initialized with a large number
of neurons since the GRNs can effectively suppresses unnecessary /noisy neurons
while activating neurons specialized for specific input signals.

Another approach to evolving solutions to complex tasks involves use of en-
coding schemes that effectively reduces the search space. This includes a multicel-
lular developmental systems by Eggenberger [5] and the Morphogenetic System
(MS) originally used on POEtic [19]. Eggenberger’s earlier model demonstrates
how cell differentiation, cell division and cell death can be controlled by gene reg-
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ulatory functionality and constructs a 3-D organism. In these two systems, the
GRNs merely act on the developmental process in constructing the phenotype.

A more refined model by Gomez and Eggenberger [6] uses ’ligand-receptor
interactions’ allowing for one neuron to recognize/attach to a partner neuron
and allow for emergence of Hebbian-type learning without specification of learn-
ing rules for a forveating artificial retina system. Astor and Adami’s [2] tissue
architecture consists of cells on a 2D tissue that perform logical functions. Cell
replication and connections are formed through a gene regulated developmental
and learning system using a Genetic Programming type command set.

In our ANT architecture, gene regulation occurs during the developmental
process in addition to when the tissue interacts with the environment. The de-
cision protein act much like gating neurons while helping to reduce the effects
of spatial crosstalk [12] and perform sensory preprocessing enabling selection of
‘specialized’ networks of neurons depending on the sensory input.

Another class of indirect developmental encoding schemes such as Artificial
Embrogeny systems [14] produce phenotypes through recursive rewriting of the
genotype code. These systems use an artificial chemistry as a grammar or model
cellular metabolism and replication. Other recursive rewriting schemes include
Cellular Encoding [7] and L-Systems (see [15,11]).

It has been argued that indirect developmental encoding schemes may ef-
fectively decrease the search space (by exploiting regularities and allowing for
peleiotropy) but at the price of introducing a deceptive fitness landscape [20].
It has also been found the overhead required for indirect encoding schemes ap-
pear to result in poor performance for smaller search spaces [20]. This presents
a problem for task decomposition, where the control scheme needs to work well
for subtasks with small and large search spaces.

3 Methodology

The ANT architecture presented in this paper consists of a developmental pro-
gram that constructs a neural tissue and associated gene-regulatory function-
ality. The gene-regulatory network consists of parameters that control growth
and activates/inhibits parts of the genotype. All the parameters defined within
the ANT architecture are evolved. This includes parameters characterizing the
decision proteins, growth parameters, cell contents and tissue topology. Neural
networks consisting of cells within the tissue are dynamically formed through a
sequence of activation/inhibition based on the coarse-coding framework.

The artificial tissue consists of a culture of cells activated and inhibited by
a gene-regulatory network. The cells exist in a three-dimensional matrix with
each cell occupying a cube (Fig. 2). Each cell contains genes specifying weights,
thresholds/biases, choice of activation function (modular neuron model [21]) and
probability ratios for instructing cell division. Cell division requires a parent cell
(selected with highest replication probability using GRNs). The new cell can be
located in one of 6 neighbouring locations (top, bottom, north,south,east,west)
sharing a common side with the parent and is not occupied by another cell.
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Fig. 1. Schematic of the ANT architecture showing gene-protein-tissue interaction
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Fig. 2. Diagram of tissue morphology and equivalent networks where O1 and O2 are
output signals.

The base layer of cells within the tissue are fully connected to all the sensory
neurons or memory neurons. While the top layer of cells triggers a set of prede-
fined basis behaviours such as to perform motor control or pass data to memory
neurons. Connection between cells from one layer to another is local, with each
cell from layer z connected to a maximum of m = 9 cells from layer z—1 (spatially
localized). pyy.» = (Yot 1 (U wigam1sige—1))/ (it s S0, 1 sigam1)
and Sz y. = [On(p,t1,t2)]s,y,> Where wy, . is a neuron weight and s, , . is
the current state of a neuron. The modular neuron model used consists of two
threshold parameters t; and ¢y, where each neuron outputs one of two states
s = (s1,82). A choice of four threshold activation functions for ¢, is given be-
low:

. 3 if ¢ t
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s2, if p>t .
b o>0-n
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enabling a single neuron to simulate AND, OR, NOT and XOR functions.

3.1 Decision Proteins and Coarse Coding

Albus argued that the mammalian brain uses tile (coarse) coding to represent
multidimensional space [1,9]. Hinton [9] and Ballard [3] point to the importance
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of modularity in the coarse-coding framework as an increase in the number of
neurons in a fixed volume limits the number of dimensions represented. We show
in our model, the potential advantages of coarse-coding as a means of arbitration
between modular networks.

The activation and inhibition of genes occur through a coarse-coding frame-
work. Decision proteins (modeled as single neurons with ability to choose be-
tween threshold activation functions) get activated and inhibited due to sensory
input. The decision proteins act by diffusing through a coarse column (receptive
field) as shown in Fig. 3. The receptive field parameters specifying position and
dimensions (D;[x, Y, Tiength, Yiength]) for each decision protein D; is also evolved.

Once a decision protein is activated, the activation concentration C;[cactive]
of each neuron cell 7 is incremented by k (a constant). With multiple decision
proteins acting together, a consensus is reached when the activation concentra-
tion (summed over multiple activated proteins) is highest for a particular output
neuron (cell at the top layer of a column). A network is dynamically formed from
all the neurons connected to the selected output neuron (in a scheme shown in
Fig. 3) with activation concentration (cgctive > 0). This characteristic is inspired
from the columnar pooling of neurons within the mammalian visual cortex. Simi-
larly, if there are multiple output neurons with the same activation concentration,
selection occurs among the output neurons according to a uniform distribution.
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Fig. 3. Diagram showing network with neuron 5 (layer 2) with highest activation
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concentration (due to coarse activation of decision protein 1 and 2) being selected.

3.2 Introns

The accumulation of nonsense genes or introns has been described to be a major
problem in the field of Genetic Programming. However, introns allow for genetic
neutrality, an important facet of evolution. With current GP approaches, intron
accumulation results in increased computational inefficiency over time. Current
techniques in controlling introns has been to prune the genotype regularly or
explicitly impose a size limit on the genotype using the fitness function. Both
strategies either lack biological plausibility or translate into more supervision.
It is noted that with GP approaches, program size increases according to
the square power law in generations [16]. For ANT, the program size growth is
controllable and increases linearly due to the growth model used. Our genotype-
to-phenotype mapping scheme avoids intron accumulation due to the crossover
operator. In GP, a node is chosen from each genome and genetic code is ex-
changed about the node. In our methodology , only a ‘compatible set’ of genes
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get interchanged during crossover. Each cell has a unique position parameter
[x,y, 2] relative to rest of the cells within the tissue. A crossover is performed by
drawing a plane (with normal vector parallel to the z or y-axis) separating the tis-
sue and exchanging ‘compatible’ cells (Fig. 4). Thus genes for cell Cy from Tissue
A and C5 from Tissue B could be interchanged iff C4 1[z,y, 2] = Cp o[z, y, 2].
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Fig. 4. A crossover operation between two ANT parents. ‘Compatible’ cells are inter-
changed as shown resulting in two offspring.

4 Example Tasks

The evolutionary performance of our ANT architecture is compared with fixed
network topologies (direct-encoding schemes) for three different robotic tasks.
All three robotic tasks were chosen because it could be argued that self-organized
task decomposition strategies may be necessary to accomplish the tasks given a
‘global’ fitness function. In addition, these tasks are inspired by some remarkable
behaviours evident in the insect world. The tasks include a multirobot tiling pat-
tern formation task [21] that involves redistributing objects (blocks) randomly
placed in a two-dimensional world into a desired tiling structure (see Fig. 7). The
robots need to come to a consensus and form one ‘perfect’ tiling pattern. This
task is similar to a segment of the termite nest construction task that involves
redistributing pheromone filled pellets on the nest floor [4].

The tiling formation task may be decomposed into a set of subtasks such
as foraging for blocks, redistributing block piles, arranging blocks in the desired
tiling structure locally, merging local lattice structures, reaching a collective
consensus and finding/correcting mistakes. In the phototactic task, the robot
must reach a goal location (light source), but it also needs to negotiate obstacles.

In the sign-following task, the robot needs to evolve the ability to decipher
the signs relative to the robot’s current frame of reference,to remember the
current sign while looking for the next one, and negotiate obstacles. Each sign is
a waypoint that gives direction to the next waypoint leading ultimately to a goal
location. Of the three tasks, this task is the most complex and requires the use
of memory. This task is inspired by honey bees ability to waggle (communicate
with other bees) and describe directions and waypoints to a food source.

The signs are posted on a fixed frame of reference and the robot based on its
current heading needs to interpret the signs accordingly. For the phototactic task
and the sign-following task, the fitness function is simply the number of times
the robot reaches and stays at the goal location and for the tiling formation task
the fitness is the Shannon’s entropy over all the tiles [21].
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Fig. 5. Schematic of 2D robot model. B1 detects whether robot is carrying a block,
D1 is a compass sensor and S1 reads the colour of the sign off the floor .

The robots are modeled as Kheperas equipped with a gripper turret. We
have developed a fast two-dimensional grid world simulator for our robotic ex-
periments and we have verified the performance of the evolved controller for the
phototactic and tiling pattern formation task using Cyberbotic’s Webots (Fig.
5). The basis behaviours chosen for all three tasks are shown in the table below:

Task zﬁ:ntlallir;gnpattem Phototactic Sign Following
Basis Move Pickup/Putdown | Pickup/Putdown
Behaviours | Pickup/Putdown | Move Forward | Move Forward

NOP Turn Right Turn Right

Turn Left Turn Left

NOP NOP
Memory
Neurons™® 2 4
Monolithic |4 hidden neurons, |12 hidden neurons,| 36 hidden neurons,
Network 1 output neuron ‘(‘vﬁtuhtgﬂz pn%”rﬁgl‘;) 12 output neurons
Topology 8 output neurons

(with- memory)

Table 1. Basis behaviours for the three robotic tasks and monolithic network topology
shown. A combination of these behaviours can be activated at each timestep.

4.1 Experiments

The evolutionary performance of various control system architectures is com-
pared for the three tasks (see Fig. 6). The fixed network architectures (Table 1)
were determined based on the number of neurons required for triggering each
basis behaviour and the size of the networks were limited to avoid the ‘bootstrap
problem’. BRL2 consist of 2 monolithic networks (Table 1) arbitrated by a deci-
sion neuron. ANT is initialized with individuals between 40 to 400 cells (uniform
distribution) for the tiling formation task and 20 to 100 cells for the phototactic
and sign-following task. This procedure is intended to determine wether there is
evolutionary preference for smaller phenotypes over larger ones.

The EA population size for all three experiments is P = 100, crossover prob-
ability p. = 0.7, mutation probability p,, = 0.025 and tournament size of 0.06 P
(for tournament selection). For the phototactic task and the sign-following task
the success rate is averaged over 100 different initial conditions (consisting of
20 x 20 world, 80 blocks) and for the tiling formation task, the fitness is aver-
aged over 15 initial conditions. For the sign-following task ‘mines’ (undetectable
by robot) are randomly laid throughout the gridworld except along the pathway.
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5 Results and Discussion

(a) 33 Tiling Patter Formation Task - Population Best Averaged (over 120 EA runs) (b) Phototactic Task - Population Best Averaged (over 60 EA runs)
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Fig. 6. Evolutionary performance comparison for the tiling-formation (a), phototactic
(b) and sign-following tasks(c). Also shown, a histogram (d) of number of cells within
the tissue (population best, after 200 generations), for the tiling formation task.

The evolutionary performance (number of successful epochs) of the ANT
architecture for three different robotic tasks is better than smaller fixed network
topologies (Fig. 6). In addition, ANT with its ability to grow in complexity
(depending on task) and exploit modularity managed to find solutions to the
sign-following task (memory dependent) where fixed topologies appear to fail.

Analyzing the 3-D morphology, active segments (consisting of specialized
networks) are distributed sparsely throughout the tissue. These networks do not
appear to decompose the task according to ‘recognizable’ distilled behaviours
but as a set of emergent proximal behaviours (proximity in sensor space) [18].

Large tissue structures do not seem detrimental to the evolutionary per-
formance because the GRN quickly evolves the ability to suppress unneces-
sary/noisy neurons within the tissue. There appears to be a steady reduction in
the number of active neurons with a convergence to a solution (Fig. 7b). During
the early phase of evolution, there is greater network activity enabling sampling
of more neurons. Convergence appears to result in the inhibition of cells that
add noise to the system (reduction in spatial crosstalk [12]).

There appears to be a noticeable improvement in evolutionary performance of
large tissue structures over smaller ones. A histogram of population best during
successful runs (with a success rate of > 0.9) compared to population best during
unsuccessful runs (success rate < 0.1) appear to confirm these observations (Fig.
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6d). The ANT architecture is more effective at being able to decompose a task
and handle the subtasks using simpler specialized networks consisting of few
neurons than the fixed architectures. This results in fewer weights having to be
tuned and thus a smaller search space.
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Fig. 7. Tissue growth characteristics (a) and max number of active cells/decision
proteins (b). (¢) 3D morphology of a tissue (solution for tiling formation task). Top
view (d) showing all the decision proteins/cells and top view (e) of decision proteins.

The most promising result from our experiments is the successful exploitation
of global memory by the ANT architecture. While a fully connected feed for-
ward network and the BRL architecture were unable to exploit this functionality
resulting in lower performance (due to a larger search space). This observation
corroborates Nolfi’s experiments for the garbage collection task [18].

The ANT architecture consists of cells interconnected locally but with access
to global memory, specialized networks separated by distance have a means of
communication, resulting in output signals that are maybe less contradictory.
Access to global memory allows for some emergent (self-organization) properties
to appear with one segment of the tissue able to ‘veto’ or override another
segment of the tissue independently. This is evident from significant performance
improvement for the phototactic task when only the decision proteins were able
to read the memory neurons (Fig. 6b).

It is also observed that the number of active decision proteins steadily in-
creases even after convergence to a solution thus creating a redundant protec-
tive mechanism against adverse mutation (Fig. 7b). Redundancy is an important
characteristic of biological systems that enable a system as whole to be robust
despite the fragility of its parts. From an evolutionary standpoint, the artificial
tissues evolve not only to solve the intended task, but also steadily develop ways
to ensure its survival and successful transfer of its genes.

6 Conclusion and Future Work

A developmental Artificial Neural Tissue architecture, with the ability to per-
form emergent task decomposition is presented in this paper. The evolutionary
performance of the ANT architecture is better than smaller fixed network topolo-
gies for three different robotic tasks. Our experiments indicate improved evolu-
tionary performance of ANT with access to memory neurons. It is hypothesized
that memory neurons allow for communication among the specialized networks,
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enabling one network to override another. We are currently planning to port
ANT onto hardware and hope to compare our architecture with other variable
length topologies for tasks such as soccer, mining and surface exploration.
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