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Abstract Robots, in their most general embodiment, can be complex systems trying
to negotiate and manipulate an unstructured environment. They ideally require an
‘intelligence’ that reflects our own. Artificial evolutionary algorithms are often used
to generate a high-level controller for single and multi robot scenarios. But evolu-
tionary algorithms, for all their advantages, can be very computationally intensive.
It is therefore very desirable to minimize the number of generations required for
a solution. In this chapter, we incorporate the Artificial Neural Tissue (ANT) ap-
proach for robot control from previous work with a novel Sensory Coarse Coding
(SCC) model. This model is able to exploit regularity in the sensor data of the en-
vironment. Determining how the sensor suite of a robot should be configured and
utilized is critical for the robots operation. Much as nature evolves body and brain
simultaneously, we should expect improved performance resulting from artificially
evolving the controller and sensor configuration in unison. Simulation results on
an example task, resource gathering, show that the ANT+SCC system is capable of
finding fitter solutions in fewer generations. We also report on hardware experiments
for the same task that show complex behaviors emerging through self-organized task
decomposition.

1 Introduction

Our motivation for evolutionary-based control approaches for multirobot systems
originates in the use of robots for space exploration and habitat construction on

Jekanthan Thangavelautham
Mechanical Engineering Dept., Massachusetts Institute of Technology, 77 Massachusetts Ave.,
Cambridge, MA, USA, 02139
Paul Grouchy and Gabriele M.T. D’Eleuterio
Institute for Aerospace Studies, University of Toronto, 4925 Dufferin St., Toronto, Canada,
M3H5T6
e-mail: jthanga@mit.edu, {paul.grouchy, gabriele.deleuterio}@utoronto.ca

1



2 Thangavelautham, Grouchy, D’Eleuterio

alien planets and planetoids, such as Mars and the Moon. Potential scenarios include
establishing a distributed antenna for communications, deploying a mobile array of
actuators and sensors for geological measurements, or constructing elements of an
outpost in preparation for the arrival of humans.

These kinds of project call for not just a single monolithic robotic system but
teams of elemental robots working in collaboration and coordination. While space
applications may require the use of a multiagent strategy, they are by no means the
only ones. Consider, for example, terrestrial applications such as search and rescue,
mapping, manufacturing and construction.

A number of factors make the team approach viable and attractive. Among them
are increased reliability. One can afford to lose a member of the team without de-
stroying the team’s integrity. A team approach can offer increased efficiency through
parallelization of operations. As such, multiagent systems are more readily scalable.
Most important, however, a team can facilitate task decomposition. A complex task
can be parsed into manageable subtasks which can be delegated to multiple elemen-
tal units.

Robotic systems can themselves be complex and their environments are gener-
ally unstructured. Sound control strategies are therefore not easy to develop. A me-
thodical approach is not only desired but arguably required. It would be ideal if the
controller could be automatically generated starting from a ‘blank slate,’ where the
designer is largely relieved of the design process and detailed models of the systems
or environment can be avoided. It is by such a road that we have come to the use of
evolutionary algorithms for generating controllers that are based on neural-network
architectures.

We have developed and tested, both in simulation and hardware, a neuroevolu-
tionary approach called the Artificial Neural Tissue (ANT). This neural-network-
based controller employs a variable-length genome consisting of a regulatory sys-
tem that dictates the rate of morphological growth and can selectively activate and
inhibit neuron ensembles through a coarse-coding scheme [31]. The approach re-
quires an experimenter to specify a goal function, a sensory input layout for the
robots and the repertoire of allowable basis behaviors. The control topology and its
contents emerge through the evolutionary process.

But is it possible to evolve, in addition to the controllers themselves, the neces-
sary sensor configurations and the selection of behavior primitives (motor-actuator
commands) concurrently with the evolution of the controller? It is this question that
we address in this work.

In tackling this challenge, we turn to a key theme in our ANT concept, namely,
coarse coding. Coarse coding is an efficient, distributed means of representation that
involves the use of multiple coarse receptive fields to represent a higher-resolution
field. As is well known, nature exploits coarse coding in the brain and sensory sys-
tems. In artificial systems, coarse coding is used to interpret data. In ANT, however,
it is the program (the artificial neural structure responsible for computation) that is
coarse coded. This allows the development of spatially modular functionality in the
architecture that mimics the modularity in natural brains.
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We present in this work a Sensory Coarse Coding (SCC) model that extends
capabilities of ANT and allows for the evolution of sensor configuration and coupled
motor primitives. The evolution of sensor configuration and behavior primitives can
be used to take advantage of regularities in the task space and can help to guide and
speed up the evolution of the controller.

Training neural network controllers using an evolutionary algorithms approach
like ANT for robotics is computationally expensive and tends to be used when other
standard search algorithms like gradient descent are unsuitable or require substan-
tial supervision for the given task space. The controllers are developed using a bi-
ologically motivated development process and replicated on one or more robotic
platforms for evaluation. Training on hardware is often logistically difficult, requir-
ing a long-term power source and a means of automating the controller evaluation
process. The alternative is to simulate the robotic evaluation process on one or more
computers. The bulk of the required time in training is the evaluation process. Ge-
netic operations including selection, mutation and crossover tend to take less than
one percent of the computational time. Therefore any method that can reduce the
number of genetic evaluations will have a substantial impact on the training pro-
cess. Furthermore, a significant reduction in the number of generations required can
also make the training process feasible on hardware. Robotic simulations often take
into account the dynamics and kinematics of robotic vehicle interactions. However,
care has to be taken to ensure the simulation environment resembles or is compatible
with actual hardware. In other circumstances, it may not be beneficial to prototype
and demonstrate capabilities and concepts in simulation before proceeding towards
expensive hardware demonstration. With robotics application on the lunar surface,
the low gravity environment cannot be easily replicated on earth and hence high fi-
delity dynamics simulation maybe need to demonstrate aspects of system capability.

For multirobotic tasks, the global effect of local interactions between robots is
often difficult to gauge, and the specific interactions required to achieve coordinated
behavior may even be counterintuitive. Furthermore, it is not at all straightforward to
determine the best sensor configuration. Often detailed analysis of the task needs to
be performed to figure out the necessary coordination rules and sensory configura-
tions. The alternatives is to use optimization techniques to in effect shrink the search
space sufficiently to enable evolutionary search algorithms to find suitable solutions.
Evolving this configuration may also give useful insight into the sensors necessary
for a task. This may help guide a robotic designer in their design processes—we do
not presume to make the designer completely redundant—by helping them deter-
mine which sensors and actuators are best to achieve a given objective. In addition,
the evolution of the sensor configuration in conjunction with the controller would
allow us to mimic nature more closely. Nature perforce evolves body and brain to-
gether.

The remainder of this chapter is organized as follows. First, we provide back-
ground to our problem by reviewing past work on the use of evolutionary algorithms
for the development of multirobot controllers and on ‘body and brain’ evolution. We
present the workings of the Artificial Neural Tissue approach followed by the Sen-
sory Coarse Coding model. We refer to the integration of the latter into the former
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as the ANT+SCC system. Next, we report on a number of experiments we have con-
ducted to demonstrate the ANT+SCC system on a group of robots, concentrating on
an example of resource gathering. This is followed by a discussion of the findings
and finally we venture some concluding remarks.

2 Background

Coordination and control of multirobot systems are often inspired by biology. In
nature, multiagent systems such as social insects use a number of mechanisms for
control and coordination. These include the use of templates, stigmergy, and self-
organization. Templates are environmental features perceptible to the individuals
within the collective [3]. In insect colonies, templates may be a natural phenomenon
or they may be created by the colonies themselves. They may include temperature,
humidity, chemicals, or light gradients. Stigmergy is a form of indirect communi-
cation mediated through the environment [12]. One way in which ants and termites
exploit stigmergy is through the use of pheromone trails. Self-organization describes
how local or microscopic behaviors give rise to a macroscopic structure in systems
[2]. However, many existing approaches suffer from another emergent feature called
antagonism [5]. This is the effect that arises when multiple agents trying to perform
the same task interfere with each other and reduce the overall efficiency of the group.

Within the field of robotics, many have sought to develop multirobot control and
coordination behaviors based on one or more of the prescribed mechanisms used
in nature. These solutions have been developed using user-defined deterministic ‘if-
then’ rules or preprogrammed stochastic behaviors. Such techniques in robotics in-
clude template-based approaches that exploit light fields to direct the creation of
walls [33] and planar annulus structures [34]. Stigmergy has been used extensively
in collective-robotic construction tasks, including blind bull dozing [24], box push-
ing [21] and heap formation [1].

Inspired by insect societies, the robots are equipped with the necessary sen-
sors required to demonstrate multirobot control and coordination behaviors. Fur-
thermore, the robot controllers are often designed by hand to be reactive and have
access only to local information. They are nevertheless able to self-organize through
cooperation to achieve an overall objective. This is difficult to do by hand, since the
global effect of these local interactions is often very difficult to predict. The sim-
plest hand-coded techniques have involved designing a controller for a single robot
and scaling to multiple units by treating other units as obstacles to be avoided [24],
[1]. Other more sophisticated techniques involve the use of explicit communication
or designing an extra set of coordination rules to gracefully handle agent-to-agent
interactions [33]. These approaches are largely heuristic, rely on ad hoc assump-
tions that often require knowledge of the task domain and are implemented with a
specified robot configuration in mind.
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2.1 The Body and the Brain

The ecological balance principle [25] states that the complexity of an ‘agent’ must
match the complexity of the task environment. In the natural world, this matching is
done by the evolutionary process which molds both the body and the brain of indi-
vidual organisms for survival. Adaptive systems may evolve to exploit regularities in
the task environment that concurrently impact the physical design and control. This
has been demonstrated with artificial evolution of both body and brain of artificial
creatures. Early work by Sims [27] involved breeding virtual creatures that could
swim and hop in a simulated 3-D environment. A generative encoding system was
used to describe the phenotype and was based on Lindenmayer’s L-system [19]. The
creatures were fully described by the genome and composed of a hierarchical de-
scription outlining three-dimensional rigid parts and various joints. Reactive control
laws were also evolved that described the interaction of the various parts.

Framsticks, another method of evolving artificial body-brain system, combined
a neural-network controller with a specified morphology [17]. The resultant virtual
creatures were evolved to perform locomotion in various environments, both on
land and in water. Grammar-based techniques have also been used to evolve brain
and bodies for robotic applications [22] and have demonstrated simple braintenberg
tasks. Work by Lipson and Pollack [20] involved the evolution of robot designs and
actuators that were realized by a 3-D printer. Standard components such as motors
were added allowing the system to perform locomotion. Further work in this area
by Zykov et al. [35] has been directed towards evolving self-replicating machine
configurations using a physical substrate.

In robotics, there are both potential advantages and disadvantages when design-
ing both body and brain concurrently for solving individual tasks. One advantage is
that the end design may be specifically tuned towards solving a specialized task in
an efficient manner (equivalent to finding a niche in nature). However, this may be
at the cost of losing multipurpose capabilities. On the other hand, specific needs and
performance considerations may warrant the need for special-purpose robots.

In many practical situations, one may not have the resources necessary to design
specialized robots for a task at hand. Hence one has to use standard robot configura-
tions and implement a controller for this configuration. However, it may be practical
to reconfigure placement of sensors on a standard robot configuration for use on a
specified task. How best to configure these sensors and implement the associated
controllers remains a crucial question in multirobot systems.

2.2 Task Decomposition

Sensor configuration is particularly key to task decomposition. The ability to parti-
tion or segment a complex task into subtasks is a vital capability for both natural and
artificial systems. Part of solving a real-world task involves sensing the environment
and using it to provide feedback when performing actions.
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One of the advantages of multirobot systems, as mentioned above, is precisely
the opportunity to facilitate task decomposition. With the use of such systems, con-
trol and coordination are critical. Both the control and coordination capabilities are
dependent on the individual robot’s ability to sense its environment and its ability to
perform actions.

2.3 Machine-Learning Techniques and Modularization

Machine-learning techniques, particularly artificial evolution, exploit self-organization
and relieve the designer of having to determine a suitable control strategy and sensor
configuration. Using these techniques, controllers and sensor configurations develop
cooperation and interaction strategies by setting the evolving system loose in the en-
vironment. By contrast, it is difficult to design controllers by hand with cooperation
in mind because it is difficult, given the complexity of the system as well as the
environment, to predict or control the global behaviors that will result from local
interactions.

One machine-learning technique to overcome the difficulties of design by hand
is based on Cellular Automata (CA) look-up tables. A genetic algorithm can be used
to evolve the table entries [7]. The assumption is that each combination of sensory
inputs will result in a particular choice of output behaviors. This approach is an in-
stance of a ‘tabula rasa’ technique. The control system starts off as a blank slate with
limited assumptions regarding control architecture and is guided through training by
a fitness function (system goal function). Such approaches can be used to obtain ro-
bust, scalable controllers that exploit multirobot mechanisms such as stigmergy and
self-organization. Furthermore, these approaches are beneficial for hardware exper-
iments as there is minimal computational overhead incurred, especially if onboard
sensor processing is available.

One of the limitations with a look-up table approach is that the table size grows
exponentially with the number of inputs. For a 3× 3 tiling formation task, a sin-
gle look-up table architecture is found to be intractable owing to premature search
stagnation [29]. To address this limitation, the controller can be modularized into
subsystems by exploiting regularities in the task environment. These subsystems
can explicitly communicate and coordinate actions with other agents. This act of
dividing the agent functionality into subsystems is a form of user-assisted task de-
composition. Such intervention requires domain knowledge of the task and ad hoc
design choices to facilitate searching for a solution.

Use of neural networks is also another form of modularization, where each neu-
ron can communicate and perform some form of sensory information processing.
The added advantage of neural-network architectures is that the neurons can gen-
eralize (unlike CAs) by recognizing correlations between a combination of sensory
inputs, thus effectively shrinking the search space. Fixed-topology neural-network
architectures have been used extensively for multirobot tasks, including building
walls [33], tile formation [30], and cooperative transport [13]. However, monolithic
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fixed-topology neural-network architectures also face scalability problems. With an
increasing number of hidden neurons, one must contend with the effects of spa-
tial crosstalk where noisy neurons interfere and drown out signals from feature-
detecting neurons [16].

Crosstalk in combination with limited supervision (through use of a global fitness
function) can lead to the ‘bootstrap problem’ [23], where evolutionary algorithms
are unable to pick out incrementally fitter solutions resulting in premature stagnation
of the evolutionary run. Thus, choosing the wrong network topology may lead to a
situation that is either unable to solve a task or is difficult to train [31].

2.4 Fixed versus Variable Topologies

Fixed-topology architectures accordingly have limitations, particularly in robotics,
for the very reason that the topology must be determined a priori and there is no
opportunity to modifying it without starting over. However, variable-topology ar-
chitectures allow for the evolution of both the network architecture and the neuronal
weights simultaneously. The genotypes for these systems are encoded in a one-to-
one mapping such as in Neuro-Evolution of Augmenting Topologies (NEAT) [28].
The use of recursive rewriting of the genotype contents to a produce a phenotype
such as in Cellular Encoding [14], L-systems [27], or through artificial ontogeny [8].
Ontogeny (morphogenesis) models developmental biology and includes a growth
program in the genome that starts from a single egg and subdivides into special-
ized daughter cells. Other morphogenetic systems include [4] and Developmental
Embryonal Stages (DES) [10].

The growth program within many of these morphogenetic systems is controlled
through artificial gene regulation. Artificial gene regulation is a process in which
gene activation/inhibition regulates (and is regulated by) the expression of other
genes. Once the growth program has been completed, there is no further use for
gene regulation within the artificial system, which is in stark contrast to biologi-
cal systems where gene regulation is always present. These variable topologies also
have to be grown incrementally starting from a single cell in order to minimize the
dimensional search space as the size of the network architecture may inadvertently
make training difficult [28]. With recursive rewriting of the phenotype, limited mu-
tations can result in substantial changes to the growth program. Such techniques also
introduce a deceptive fitness landscape where limited fitness sampling of a pheno-
type may not correspond well to the genotype, resulting once again in premature
search stagnation [26].

The Artificial Neural Tissue concept [31] is intended to address limitations evi-
dent with existing variable topologies through the modeling of a number of biolog-
ically plausible mechanisms. ANT also uses a nonrecursive genotype-to-phenotype
mapping, avoiding deceptive fitness landscapes, and includes gene duplication simi-
lar to DES. Gene duplication involves making redundant copies of a master gene and
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facilitates neutral ‘complexification,’ where the copied gene undergoes mutational
drift and results in the expression of incremental innovations [10].

2.5 Regularity in the Environment

Most of the developmental systems described above deal with techniques used to fa-
cilitate evolution of network topologies. A critical advantage of the neural-network
approach is its ability to generalize. Generalization often relies on regularities and
patterns in the sensory input space to be effective. However the sensor configura-
tion used by these developmental controllers still need to be specified by the experi-
menter. As discussed earlier, in a multirobot environment, it is often counterintuitive
as to what control rules are necessary to obtain desired global behaviors. Further-
more, it is difficult to know what sensor configuration is necessary to facilitate these
control rules. A number of techniques including the one presented here attempt to
address this limitation. By allowing for the evolutionary search process to modify
sensor configuration and geometry, it expected that this will facilitate finding effi-
cient solutions with fewer genetic evaluations.

Blondie24 [6], an evolved checkers-playing neural network is one of the early
efforts to exploit regularity in task space. A standard fixed neural-network topology
was designed to take into account the regularity of the checkerboard. Hidden nodes
of the network were tied to subsquares (cell regions arranged in square shape). The
resultant network was coevolved with real players on an Internet checkers server
and reached an expert level of proficiency in the game.

HyperNEAT extends NEATs capabilities by combining a variable neural-network
topology with a hypercube-based generative description of the topology [11]. In-
stead of encoding for every weight in the network separately in the genome, Hyper-
NEAT uses a type of Compositional Pattern Producing Network (CPPN) to produce
a network that represents the weight (connectivity) parameters of the phenotype
network (controller). It also allows for the CPPNs to represent symmetries and reg-
ularities from the geometry of the task inputs directly in the controller.

Geometric regularities can also be extracted using coarse-coding techniques.
Coarse coding allows for the partitioning of separate geometric locations and thus
allows for each part to be learned separately through task decomposition [11]. While
this is advantageous it has also been argued that it may prevent the learning system
from discovering interdimensional regularities and alternate approaches have been
shown to overcome this limitation using a priori knowledge [18]. However, as we
show here, this capability can also be evolved.

ANT+SCC extends the ANT approach with a sensor mapping and filtering
scheme. This functionality is performed by a group of sensory neurons that interact
in a coarse-coding fashion. This interaction helps determine resultant sensor geom-
etry and resolution and aids in the filtering process. The output from these sensor
neurons feeds into an ANT controller where higher-level processing is performed.
This laminar scheme bears some resemblance in functionality to how the visual cor-
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tex in the mammalian brain operates with lower layers performing sensory filtering
such as edge and line detection which in turn is used by higher-level functionality
to make, for example, optical flow measurements.

3 Artificial Neural Tissue Model

The ANT architecture (Fig. 1a) presented in this paper consists of a developmen-
tal program, encoded in the “genome,” that constructs a three-dimensional neural
tissue and associated regulatory functionality. The tissue consists of two types of
neural units, decision neurons and motor-control neurons, or simply motor neurons.
Regulation is performed by the decision neurons that dynamically exhibit or inhibit
motor-control neurons within the tissue based on a coarse-coding techniques. The
following sections discuss the computational aspects of the tissue and how it is cre-
ated.

3.1 Computation

We imagine the motor neurons of our network to be spheres arranged in a regular
rectangular lattice in which the neuron Nλ occupies the position λ = (l,m,n) ∈ I3

(sphere centered within cube). The state sλ of the neuron is binary, i.e., sλ ∈ S =
{0,1}. Each neuron Nλ nominally receives inputs from neurons Nκ where κ ∈⇑(λ ),
the nominal input set. Here we shall assume that these nominal inputs are the 3×3
neurons centered one layer below Nλ ; in other terms, ⇑(λ )= {(i, j,k) | i= l−1, l, l+
1; j =m−1,m,m+1; k = n−1}. (As will be explained presently, however, we shall
not assume that all the neurons are active all the time.) The activation function of
each neuron is taken from among four possible threshold functions of the weighted
input σ :

ψdown(σ ,θ1) =

{
0, if σ ≥ θ1
1, otherwise

ψup(σ ,θ2) =

{
0, if σ ≤ θ2
1, otherwise

ψditch(σ ,θ1,θ2) =

{
0, min(θ1,θ2)≤ σ < max(θ1,θ2)
1, otherwise

ψmound(σ ,θ1,θ2) =

{
0, σ ≤min(θ1,θ2) or σ > max(θ1,θ2)
1, otherwise

(1)

The weighted input σλ for neuron Nλ is nominally taken as
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σλ =
∑κ∈⇑(λ ) wκ

λ
sκ

∑κ∈⇑(λ ) sκ

(2)

with the proviso that σ = 0 if the numerator and denominator are zero. Also, wκ

λ
∈R

is the weight connecting Nκ to Nλ . We may summarize these threshold functions in
a single analytical expression as

ψ = (1 − k1)[(1 − k2)ψdown + k2ψup] + k1[(1 − k2)ψditch + k2ψmound] (3)

where k1 and k2 can take on the value 0 or 1. The activation function is thus encoded
in the genome by k1,k2 and the threshold parameters θ1,θ2 ∈ R.

It may appear that ψdown and ψup are mutually redundant as one type can be
obtained from the other by reversing the signs on all the weights. However, retaining
both increases diversity in the evolution because a single 2-bit “gene” is required to
encode the threshold function and only one mutation suffices to convert ψdown into
ψup or vice versa as opposed to changing the sign of every weight.

The sensor data are represented by the activation of the sensor input neurons
Nα i , i = 1 . . .m, summarized as A = {sα1 ,sα2 . . .sαm}. Similarly, the output of the
network is represented by the activation of the output neurons Nω j , j = 1 . . .n, sum-
marized as Ω = {s

ω1
1
,s

ω2
2
. . .s

ωb
n
}, where k = 1 . . .b specifies the output behavior.

Each output neuron commands one behavior of the agent. (In the case of a robot, a
typical behavior may be to move forward a given distance. This may involve the co-
ordinated action of several actuators. Alternatively, the behavior may be more prim-
itive such as augmenting the current of a given actuator.) If s

ωk
j
= 1, output neuron

ω j votes to activate behavior k; if s
ωk

j
= 0, it does not. Since multiple neurons can

have access to a behavior pathway, an arbitration scheme is imposed to ensure the
controller is deterministic where p(k) = ∑

nk
s�, j=1 s

ωk
j
/nk and nk is the number of out-

put neurons connected to output behavior k resulting in behavior k being activated
if p(k)≥ 0.5.

As implied by the set notation of Ω , the outputs are not ordered. In this embodi-
ment, the order of activation is selected randomly. We are primarily interested here
in the statistical characteristics of relatively large populations but such an approach
would likely not be desirable in a practical robotic application. However this can be
remedied by simply assigning a sequence a priori to the activations (as shown in
Table 2 for the resource gathering task).

We moreover note that the output neurons can be redundant; that is, more than
one neuron can command the same behavior, in which case for a given time step
one behavior may be “emphasized” by being voted multiple times. Neurons may
also cancel out each other.
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(a) Synaptic connections

(b) Coarse-coding

Fig. 1 Synaptic connections between motor neurons and operation of neurotransmitter field.

3.2 The Decision Neuron

The coarse-coding nature of the artificial neural tissue is provided by the decision
neurons. Decision neurons can be thought of as rectangular structures occupying
nodes in the lattice as established by the evolutionary process (Fig. 1). The effect
of these neurons is to excite into operation or inhibit (disable) the motor control
neurons (shown as spheres). Once a motor control neuron is excited into operation,
the computation outlined in (2) is performed. Motivated as we are to seek biolog-
ical support for ANT, we may look to the phenomenon of chemical communica-
tion among neurons. In addition to communicating electrically along axons, some
neurons release chemicals that are read by other neurons, in essence serving as a
“wireless” communication system to complement the “wired” one.

In ANT, the state of a decision neuron Tµ , µ is binary and determined by one of
the same activation functions 1 that also embedded within the motor control neu-
rons. The inputs to Tµ are all the input sensor neurons Nα ; i.e., sµ = ψµ(sα1 . . .sαm)
where σµ =∑α vµ

α sα/∑α sα and vµ

α are the weights. The decision neuron is dormant
if sµ = 0 and releases a virtual neurotransmitter chemical of uniform concentration
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cµ over a prescribed field of influence if sµ = 1. Motor control neurons within the
highest chemical concentration field are excited into operation. Only those neurons
that are so activated will establish the functioning network for the given set of input
sensor data. Owing to the coarse-coding effect, the sums used in the weighted input
of 1 are over only the set ⇑(λ )⊆⇑(λ ) of active inputs to Nλ . Likewise the output of
ANT is in general Ω ⊆ Ω . The decision neuron’s field of influence is taken to be a
rectangular box extending ±dr

µ , where r = 1,2,3, from µ in the three perpendicular
directions. These three dimensions along with µ and cµ , the concentration level of
the virtual chemical emitted by Tµ , are encoded in the genome.

Fig. 2 Gene map for the Artificial Neural Tissue

3.3 Evolution and Development

A population of ANT controllers is evolved in an artificial Darwinian manner. The
“genome” for a controller contains a “gene” for each cell with a specifier D that is
used to distinguish the functionality (between motor control, decision and tissue).
A constructor protein (an autonomous program) interprets the information encoded
in the gene and translates this into a cell descriptor protein (see Fig. 2). The gene
“activation” parameter is a binary flag resident in all the cell genes and is used to
either express or repress the contents of gene. When repressed, a descriptor protein
of the gene content is not created. Otherwise, the constructor protein “grows” the
tissue in which each cell is located relative to a specified seed-parent address. A
cell death flag determines whether the cell commits suicide after being grown. Once
again, this feature in the genome helps in the evolutionary process for a cell, by
committing suicide, still occupies a volume in the lattice although it is dormant. In
otherwise retaining its characteristics, evolution can decide to reinstate the cell by
merely toggling a bit.
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Fig. 3 Genes are “read” by constructor proteins that transcribe the information into a descriptor
protein which is used to construct a cell. When a gene is repressed, the constructor protein is
prevented from reading the gene contents.

In turn mutation (manipulation of gene parameters with uniform random distribu-
tion) to the growth program results in new cells being formed through cell division.
The rate at which mutation occurs to a growth program is also specified for each tis-
sue and is dependent on the neuron replication probability parameter. Cell division
requires a parent cell (selected with highest replication probability relative to the rest
of the cells within the tissue) and involves copying m% of the original cell contents
to a daughter cell (where m is determined based on uniform random distribution),
with the remaining cell contents initialized with a uniform random distribution. The
cell type of each new cell is determined based on the ratio of motor control to deci-
sion neurons specified in the tissue gene. The new cell can be located in one of six
neighboring locations (top, bottom, north, south, east, west) sharing a common side
with the parent and is not occupied by another cell.

3.4 Sensory Coarse Coding Model

In this section we present the Sensory Coarse Coding (SCC) model. The model in-
cludes two components that allow for filtering and mapping locations of sensory
inputs. Sensory Coarse Coding provides additional functionality not found within
the ANT model, namely the ability to search for spatial mappings of sensory in-
puts while simultaneously filtering these inputs for further processing. Biological
motivation for this capability comes from analyzing the visual cortex.

Within the tissue architecture, we include one additional type of neuron, the sen-
sor neuron. There exists a group of v sensory neurons Π = [Φτ1 ,Φτ2 . . .Φτv ], where
each neuron has a position τ = (l,m), l ∈ [0,h−1] + 0.5, m ∈ [0,h−1] + 0.5 on
a spatial map spanning h× h grid squares and representing the agent/robot and its
surroundings (Fig. 4 left). The state sτ of a sensor neuron can assume one of up to q
states, i.e., sτ ∈ A′ = {sα1 ,sα2 . . .sαq}.
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Each neuron Φτ receives input from spatial map locations Lϕ , where ϕ ∈⇑(τ),
the input set. Each grid square Lϕ assumes a sensor reading, one of q states,
i.e., Lϕ ∈ A′. Here we shall assume that the receptive field for this sensor neu-
ron is a bounded area containing aτ × bτ grid squares centered at (l,m), i.e.,
⇑(τ) = {(i, j) | i ∈ [l−aτ/2, l +aτ/2] , j ∈ [m−bτ/2,m+bτ/2]}. The sensory neu-
rons are not necessarily fed their entire input set. A coarse coding system is used
to decide which inputs, if any, a sensory neuron will receive. Each sensory neuron
emits a stimulus chemical in the area ⇑(τ) such that the amount of chemical diffused
at location ϕ due to sensory neuron Φτ i is the following:

cϕ,τ i =

{
1, if ϕ ∈ ⇑(τ i)
0, otherwise (4)

Therefore, the net concentration of chemical diffused due to the v sensory neurons
at ϕ is:

cϕ =
v

∑
i=1

cϕ,τ i (5)

Fig. 4 (Left) Three sensor neurons and their respective receptive field shown shaded. With S = 1,
only Φ2 is selected since ∑ϕ∈⇑(τ) cϕ is the highest among the three. (Right) Once Φ2 is activated,
only locations with the highest chemical concentrations (shaded in dark gray) are fed as inputs to
the evolved priority filter. The result is a single output from the neuron, indicating red.

To determine which grid squares a sensory neuron Φτ will receive, the chemical
concentration at each location ϕ ∈⇑ (τ) is calculated. The states of the locations
Lϕ that have a maximum chemical concentration in the grid are fed to the sensory
neuron inputs. If ∑ϕ∈⇑(τ) cϕ = 0, sensory neuron Φτ is deactivated. Furthermore, S
sensor neurons with the highest ∑ϕ∈⇑(τ) cϕ are activated. S ∈ I and can be evolved
within the tissue gene or be specified for a task.

Therefore, we define Iτ = {Lϕ |cϕ = maxϕ ′∈⇑(τ)
(
cϕ ′

)
} as the input set after

coarse coding to sensory neuron Φτ . For sensor neurons that are active, we calculate
sτ :

sτ = min
i∈[1,...,q]

(pi) � p j ∩ Iτ 6= /0, ∀ j < i (6)

where p j is an element of a global priority list P of sensory states, P= [p1 . . . pq] and
where p j ∈ A′. The global priority list is obtained by polling a group of filter units
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and is described in Section 3.4.1. In summary, each sensory neuron takes inputs from
⇑(τ) and produces a single output sτ , where both inputs and outputs are restricted to
the states in A′. This reduction of inputs to a single output is done through prioritized
filtering using the global priority list P. Thus if a sensory neuron’s input set ⇑(τ)
contains one or more states p1, the sensory neuron’s output sτ is set to p1, regardless
of its other input states. Similarly, if a sensory neuron’s input set contains one or
more states p2 and no states p1, the output is set to p2, regardless of its other inputs,
and so on down the priority list.

3.4.1 Input Filtering

The priority list P is generated by polling a group of n filter units. Each of these
independent units takes in as input q weighted inputs and produces a single binary
output using the threshold activation function ψup from (1). Each filter unit j has q
weights w jk, 1≤ k≤ q. To poll the filter units for a particular input state sαk ∈A′, the
units are given an input vector of size q containing all zeros, except for at position
k, which is set to one, and their outputs are summed to yield Vsαk

. Thus to tally the
votes for input state sα3 , the filter units receive the input vector [0 0 1 0 . . .0] of size
q and their outputs are summed as given below:

Vsk =
n

∑
j

ψup
(
w jk,θ j

)
(7)

This process is repeated for all states in A′, and the priority list is generated by
assigning the state with the highest number of votes to p1, assigning the state that
garnered the second highest number of votes to p2, etc. In case of a tie, the tie-
breaker is the sum of the raw outputs of the filter networks, i.e., before the ψup
activation function is applied.

3.4.2 Evolution and Development

Fig. 5 shows the additional types of genes included in the tissue genome. These
genes are developed similar to the motor neurons and decision neurons as described
in Section 3.3. The sensor neurons are grown on a two-dimensional spatial map.
Mutations can perturb the contents of an existing gene or result in the development
of new ones. Both the filter units and sensor neurons also have a “sensor type” spec-
ifier which restricts each genome to access certain types of sensory inputs such as
obstacle detection or color detection (See Section 4 for further details). Furthermore,
sensor neurons have the capability of referencing different groups of filter units us-
ing the “Filter Reference” parameter. However for the experiments presented here
we set this value to 0.
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Fig. 5 Gene map for the Sensory Coarse Coding Model

4 An Example Task: Resource Gathering

The effectiveness of the ANT controller is demonstrated in simulation on the re-
source gathering task [32]. A team of robots collects resource material distributed
throughout its work space and deposits it in a designated dumping area. The
workspace is modeled as a two-dimensional grid environment with one robot oc-
cupying four grid squares.

For this task, the controller must possess a number of capabilities including gath-
ering resource material, avoiding the workspace perimeter, avoiding collisions with
other robots, and forming resources into a berm at the designated location. (In the
present experiment, a berm is simply a mound of the resource material.) The berm
location has perimeter markings on the floor and a light beacon mounted nearby. The
two colors on the border are intended to allow the controller to determine whether
the robot is inside or outside the berm location (Fig. 6).

Fig. 6 2D grid world model of experiment chamber.
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Though solutions can be found without the light beacon, its presence improves
the efficiency of the solutions found, as it allows the robots to track the target loca-
tion from a distance instead of randomly searching the workspace for the perimeter.
The global fitness function for the task measures the amount of resource material
accumulated in the designated location within a finite number of time steps, in this
case T = 300. Darwinian selection is performed based on the fitness value of each
controller averaged over 100 different initial conditions.

Table 1 Predefined Sensor Inputs

Sensor Variables Function Description

V1 . . .V4 Resource Detection Resource, No Resource
C1 . . .C4 Template Detection Blue, Red, Orange, Floor
S1,S2 Obstacle Detection Obstacle, No Obstacle
LP1 Light Position Left, Right, Center, No Light
LD1 Light Range 0-10 (distance to light)

Fig. 7 Predefined input sensor mapping, with simulation model inset.

Table 2 Preordered Basis Behaviors

Order Behavior Description

1 Dump Resource Move one grid square back; turn left
2 Move Forward Move one grid square forward
3 Turn Right Turn 90◦ right
4 Turn Left Turn 90◦ left
5, 7, 9, 11 Bit Set Set memory bit i to 1, i = 1 . . .4
6, 8, 10, 12 Bit Clear Set memory bit i to 0, i = 1 . . .4
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Simple feature-detection heuristics are used to determine the values of V1 . . .V4
and C1 . . .C4 based on the grid locations shown. For detection of the light beacon,
the electronic shutter speed and gain are adjusted to ensure that the light source is
visible while other background features are underexposed. The position of the light
LP1 is determined based on the pan angle of the camera. The distance to the light
source LD1 is estimated based on its size in the image. The robots also have access
to four memory bits, which can be manipulated using some of the basis behaviors.
Table 2 lists the basis behaviors the robot can perform. These behaviors are activated
based on the output of the ANT controller, and all occur within a single time-step.

4.1 Coupled Motor Primitives

In this section we consider an alternative setup, where the ANT controllers are pro-
vided building blocks for the basis behaviors in the form of motor primitive [9]
sequences. The motor primitives are taken as discrete voltage signals over a dis-
crete time window applied on DC motors as shown in Fig. 8 and as arguments to the
motor primitive commands in Table 3. These voltage output signals feed to the actu-
ators and can be in one of three states, {1,0,−1}V for a discrete time window, ∆ tn,
n ∈ {0,1,2,3,4,5} as shown. In addition, each actuator takes on a default voltage
value of 0. The actual value of V , the voltage constant, is dependent on the actuator.

Fig. 8 Motor primitives composed of discretized voltage signals shown for a simulated robot.

Fig. 9 Modified tissue gene that includes order of execution of motor primitive sequences.
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Table 3 Coupled Motor Primitives for the Sign-Following Task.

Neuron ID Behavior Coupled Motor Signals

1 Move Forward Left Motor 1 || Right Motor 1
2 Turn Right 90◦ Left Motor 1 || Right Motor -1
3 Turn Left 90◦ Left Motor -1 || Right Motor 1
4 Pivot Right Left Motor 0 || Right Motor -1
5 Pivot Left Left Motor 0 || Right Motor 1
6 Pivot Right Left Motor 1 || Right Motor 0
7 Pivot Left Left Motor -1 || Right Motor 0
8, 10, 12, 14 Bit set Set memory bit i to 1, i = 1 · · ·4
9, 11, 13, 15 Bit clear Set memory bit i to 0, i = 1 · · ·4

The ANT controller also needs to determine the order of execution of these mo-
tor primitive sequences. The modified tissue gene is shown in Fig. 9. The order of
the output coupled motor primitive (CMP) sequences are evolved as additional pa-
rameters in the tissue gene and is read starting from the left. The elements of the
table, o1, · · · ,oε contain the Neuron ID values. The order is randomly initialized
when starting the evolutionary process and with each Neuron ID occupying one
spot on the gene. Point mutations to this section of the tissue gene involves swap-
ping Neuron ID values between sites. Table 3 shows the repertoire of coupled motor
primitives provided for the ANT controllers and thus ε = 15 for this particular setup
(Fig. 9). The motor primitives are coupled, where for example the left drive motor
and the right drive motor are executed in parallel (indicated using ||). Under this
setup, it is still possible for the controller to execute a sequence of motor primitives
in a serial fashion.

4.2 Evolutionary Parameters

The evolutionary algorithm population size for the experiments is P = 100, with
crossover probability pc = 0.7, mutation probability pm = 0.025 and a tournament
size of 0.06P. The tissue is initialized as a “seed culture” , with 3× 6 motor con-
trol neurons in one layer. After this, the tissue is grown to include 70–110 neurons
(selected from a uniform random distribution) before starting the evolutionary pro-
cess These seeding parameters are not task specific and have been observed to be
sufficient for a number of different robotic tasks.

5 Results

We compare evolutionary performance of various evolvable control system models
in Fig. 10. Included is a Cellular Automata lookup table that consists of a table
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of reactive rules that spans 1216384 entries for this task which was evolved using
population, selection and mutation parameters from Section 4.2. The genome is
binary and is merely the contents of the lookup table. For this approach, we also
assumed that the light beacon is turned off. Hence there exists 24×44×22 = 16384
possible combinations of sensory inputs states, accounting for resource detection,
template detection and obstacle detection sensors respectively (Table 1). For each
combination of sensory input, the 12 allowable behaviors outlined in Table 2 could
be executed. As can be seen, the population quickly stagnates at a very low fitness
due to the ‘bootstrap problem’ [23]. With limited supervision, the fitness function
makes it difficult to distinguish between incrementally fitter solutions. Instead the
system depends on ‘bigger leaps’ in fitness space (through sequences of mutations)
for it to be distinguishable during selection. However, bigger leaps become more
improbable as evolution progresses, resulting in search stagnation. The performance
of a population of randomly initialized fixed-topology, fully-connected networks,
consisting of between 2 and 3 layers, with up to 40 hidden and output neurons is
also shown in Fig. 10.

Fig. 10 Evolutionary performance comparison, showing population best averaged over 30 Evo-
lutionary Algorithm runs of various evolvable control architectures. Error bars indicate standard
deviation. As shown, ANT combined with Sensory Coarse Coding (SCC) and Coupled Motor
Primitives (CMP) ordered through evolution obtains desired solutions with fewer genetic evalua-
tions. The CA lookup table approach as shown remains stagnant and is unable to solve the task
while fixed-topology neural nets converge at a much slower rate.

In a fixed-topology network there tends to be more “active” synaptic connections
present (since all neurons are active), and thus it takes longer for each neuron to tune
these connections for all sensory inputs. In this regard ANT is advantageous, since
the topology is evolved and decision neurons learn to inhibit noisy neurons through
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a masking process. The net result is that ANT requires fewer genetic evaluations to
evolve desired solutions in comparison to standard neural networks. The standard
ANT model using sensory inputs and basis behaviors outlined in Tables 1 and 2,
respectively, shows a noticeable improvement in evolutionary performance over the
lookup table and fixed topology architectures. Further improvement is gained when
we allow the ANT architecture to evolve the execution order scheme and coupled
motor primitives (Section 4.1) instead of using a list of preordered basis behaviors.

Finally, we also compare ANT+SCC using coupled motor primitives with these
models. To make the comparison meaningful with respect to the other models, we
impose some restrictions on the ANT+SCC configuration. This includes limiting
the maximum number of active (selected) sensor neurons from the SCC model to
4 for the resource detection layer and 4 for the template detection layer. We also
used predefined layouts for the other spatial sensors, namely obstacle detection. As
can be seen in these results, ANT+SCC shows a noticeable performance advantage
over the baseline ANT model. Furthermore, we obtain equivalent population best
fitness values requiring approximately 5 times less genetic evaluations than with
the baseline ANT model (Table 4). It should be noted that desired solutions ( f ≥
0.885) were not obtained using standard neural networks within 10,000 generations
of evolution. Examples of an evolved execution order scheme and sensor priority
table using ANT+SCC+CMP are shown in Fig. 12.

Table 4 Number of generations required to obtain desired solutions ( f ≥ 0.885).

Method Avg. Generations Standard Deviation

ANT+SCC+CMP 421 133
ANT+CMP 1,142 241
ANT+SCC+CMP Control Experiment 1 1,343 104
ANT+SCC+CMP Control Experiment 2 1,968 312
ANT 1,983 235
Fixed Topology Neural Net. > 10,000 NA

A typical evolutionary run for the resource gathering task using ANT takes ap-
proximately six hours on a dual core Intel T7200, 2GHz desktop processor, with
only one core being used for the evolutionary run. With ANT + SCC + CMP, one
can get a comparably suitable solution in less than one hour thirty minutes. Further-
more since this five fold improvement in performance is due to enhancements in the
search process, the improvement is expected to carry over with faster processors.
Using regular neural networks comparable solutions were not obtained even after
approximately 30 hours (10,000 generations) of evolution.

The solutions obtained in Table 4 can accumulate at least 88.5% of the dispersed
resources in the designated dumping area within T = 300 timesteps and has been
determined to be of sufficient quality to complete the task (see Fig. 18 for hardware
demonstration). Given more timesteps, it is expected that the robots will have ac-
cumulated the remaining resources. One would ideally like to provide as input raw
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sensor data to the robot controller. However this results in an exponential increase
in search space for a linear increase in sensor states. The alternative would be to
filter out and guess which subset of the sensory states maybe useful for solving a
prespecified task. A wrong guess or poor design choice may make the process of
finding a suitable controller difficult or impossible. Hence, ANT+SCC allows for
additional flexibility, by helping to filter out and determine suitable sensory input
states.

Fig. 13 shows the evolved population of sensory neurons on the body-centric spa-
tial map. Fig. 11 (left) shows the average area used by selected sensor neurons and
the average number of sensor neurons that participated in the selection process dur-
ing evolution. The average area remains largely constant indicating there is strong
selective pressure towards particular geometric shapes and area. This makes sense
for the resource gathering task, as controllers need to detect a sufficiently large area
in front to identify color cues indicating whether the robot is inside or outside the
dumping area. What is interesting is that with S = 4, for template detection sensors
neurons, we still see a steady increase in the number of sensor neurons competing to
get selected. The increased number of neurons can potentially act in a cooperative
manner, reinforcing and serving as redundant receptive fields covering key locations
on the spatial map. Redundancy is beneficial in limiting the impact of deleterious
mutations. Fig. 11 (right) shows that the individuals in the evolutionary process start
off by sensing a smaller area and that this area is steadily increased as the solutions
converge. If each sensor neuron senses just one grid square area, then filtering is
effectively disabled. At the beginning of the evolutionary process, individuals take
on reduced risk by sensing a smaller effective area, but as the filtering capability
evolves concurrently (correctly prioritizing the sensory cues), it allows for the indi-
vidual controllers to sense and filter a larger area. The number of active filter units
continue to get pruned, until they reach a steady state number. This trend is con-
sistent with experiments using ANT [31], where noisy neurons are shut off as the
controllers converge towards a solution.

In order to measure the impact of the coarse-coding and filtering towards ANT+SCC
performance improvement, we performed control experiment 1, where the maxi-
mum size of the sensor cells was restricted to one grid square and where the net
concentration of each grid square within the spatial map was set to 1 (Table 4).
These two modifications effectively prevent coarse sensor cells from forming and
interacting to form fine representations. Instead, what is a left is a group of fine sen-
sor neurons that are always active. With the sensor cell area being restricted to one
grid square, the priority filter has no effect, since it requires at least two grid squares
with differing sensory input states. The fitness performance of this model is com-
parable to the baseline ANT model. However, since this model also uses coupled
motor primitives and it performed worse than ANT+CMP alone, the net impact of
these imposed constraints is actually a decrease in performance. Furthermore, we
performed a second control experiment (control experiment 2), where we imposed
the receptive field sizes to 3× 3 grid squares and set the net concentration at each
grid square to 1 (Table 4). These two modifications ensure the receptive field re-
mains coarse and prevents coarse coding interactions from occurring, while leaving
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Fig. 11 (Left) Average area occupied by selected sensor neurons and number of sensor neurons
that participated in the selection process during evolution (Right) Number of active filter units
and number of grid squares accessible by the sensor neurons during evolution. Both plots show
parameters from population best averaged over 30 Evolutionary Algorithm runs.

Fig. 12 Evolved coupled motor primitives ordering scheme and sensor priority list for template
detection shown for an ANT+SCC+CMP controller with a fitness of 0.98. See Table 3 and 1 for
reference.

the filter functionality within SCC turned on. The net effect is that we a see no-
ticeable drop in performance due to SCC. Both of these experiments indicate that
coarse-coding interaction between sensor neurons is helping to find desired solution
within fewer genetic evaluation.

Fig. 13 Example of an evolved sensor layout (fitness of 0.98) using the ANT+SCC+CMP model.
(Left) Participating sensor neurons and receptive fields (template detection) shown. (Right) Se-
lected sensor neurons shown. Shaded area indicates resultant regions sensed by the controller.
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5.1 Evolution and Robot Density

Fig. 14 shows the fitness (population best) of the overall system evaluated at each
generation of the artificial evolutionary process using the baseline ANT model, with
a specified initial resource density and various robot densities. These results show
that system performance increases with the number of robots present (with total area
held constant). For scenarios initialized with more robots, each robot has a smaller
area to cover in trying to gather and dump resources.

Fig. 14 Evolutionary performance comparison of ANT-based solutions for one to five robots. Error
bars indicate standard deviation.

5.2 Behavioral Adaptations

In an ANT-based architecture, networks are dynamically formed with decision neu-
rons processing the sensory input and in turn “selecting” motor-control neurons
through coarse-coding [31]. The behavioral activity of the controllers (see Fig. 16)
shows the formation of small networks of neurons which handle individual behav-
iors, such as dumping resources or detecting visual templates (boundary perimeters,
target area markings, etc.). Localized regions within the tissue do not exclusively
handle these specific user-defined, distal behaviors. Instead, the activity of the de-
cision neurons indicate distribution of specialized “feature detectors” among inde-
pendent networks.

Some of the emergent solutions evolved indicate that the individual robots all
figure out how to dump nearby resources into the designated berm area, but that not
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all robots deliver resource all the way to the dumping area every time. Instead, the
robots learn to pass the resource material from one individual to another during an
encounter, forming a “bucket brigade” (see Fig. 15, 18). This technique improves
the overall efficiency of the system as less time is spent traveling to and from the
dumping area. Since the robots cannot explicitly communicate with one another,
these encounters happen by chance rather than through preplanning. As with other
multiagent systems, communication between robots occurs through the manipula-
tion of the environment in the form of stigmergy. The task in [33] is similar in that
distributed objects must be delivered to a confined area; however, the hand-designed
controller does not scale as well as the “bucket brigade” solution that the ANT con-
trollers discovered here. We also noticed that the robot controllers do make use of
the light beacon to home in on the light beacon that is located next to a dumping
area, however there is no noticeable difference in fitness performance, when the
robot controllers are evolved with light turned off [32]. In these simulation experi-
ments, the robots have no way to measure the remaining time available; hence, the
system cannot greedily accumulate resource materials without periodically dumping
the material at the designated area.

Fig. 15 Snapshots of robots and trajectories of a task simulation (4 robots).
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Fig. 16 Tissue Topology and neuronal activity of a select number of decision neurons. Decision
neurons in turn “select” (excite into operation) motor control neurons within its diffusion field.

Fig. 17 Scaling of ANT-based solutions from one to five robots.
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Fig. 18 Snapshots of two rovers performing the resource gathering task using an ANT controller.
Frames 2 and 3 show the “bucket brigade” behavior, while frames 4 and 5 show the boundary
avoidance behavior.

5.3 Evolved Controller Scalability

We examine the fittest solutions from the simulation runs shown in Fig. 17 for scal-
ability in the number of robots while holding the amount of resources constant. Tak-
ing the controller evolved for a single robot and running it on a multirobot system
shows limited performance improvement. In fact, using four or more robots results
in a decrease in performance, due to the increased antagonism created.

The scalability of the evolved solution depends in large part on the number of
robots used during the training runs. The single-robot controller expectedly lacks
the cooperative behavior necessary to function well within a multiagent setting. For
example, such controllers fail to develop “robot collision avoidance” or “bucket
brigade” behaviors. Similarly, the robot controllers evolved with two or more robots
perform demonstrably worse when scaled down to a single robot, showing that the
solutions are dependent on cooperation among the robots.

6 Discussion

In this chapter, we use a global fitness function to train multirobot controllers with
limited supervision to perform self-organized task decomposition. Techniques that
perform well for the task make use of modularity and generalization. Modularity
involves use/reuse of components, while generalization involves finding patterns
or making inferences from many particulars. With a multirobot setup, modularity
together with parallelism is exploited by evolved controllers to accomplish the task.
Rather than have one centralized individual attempting to solve a task using global
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information, the individuals within the group are decentralized, make use of local
information and take on different roles through a process of self-organization. This
process of having different agents solve different subcomponents of the task in order
to complete the overall task is a form of task decomposition.

In this multirobot setup, there are both advantages and disadvantages to consider.
Multiple robots working independently exploit parallelism, helping to reduce the
time and effort required to complete a task. Furthermore, we also see that solutions
show improved overall system performance when evolved with groups of robots. It
should be noted that the density of robots is critical towards solving the task. Higher
densities of robots results in antagonism, with robots spending more time getting
out of the way of one another rather than progressing on the task, leading to reduced
system performance.

It was shown that a CA look-up table architecture that lacked both modularity
and generalization is found to be intractable due to the ‘bootstrap problem,’ result-
ing in premature search stagnation. This is due to the fact that EAs are unable to
find an incrementally better solution during the early phase of evolution. Use of
neural networks is a form of functional modularization, where each neuron per-
forms sensory-information processing and makes solving the task more tractable.
However with increased numbers of hidden neurons, one is faced with the effects of
spatial crosstalk where noisy neurons interfere and drown out signals from feature-
detecting neurons [16]. Crosstalk in combination with limited supervision (through
use of a global fitness function) can again lead to the ‘bootstrap problem’ [23]. Thus,
choosing the wrong network topology may lead to a situation that is either unable
to solve the problem or difficult to train [31].

With the use of Artificial Neural Tissues (ANT), we introduce hierarchical func-
tional modularity into the picture. The tissue consists of modular neurons that can
form dynamic, modular networks of neurons. These groups of neurons handle spe-
cialized functionality as we have shown and can be reused repeatedly for this pur-
pose. In contrast, with a standard fixed topology neural network, similar function-
ality may need to evolve independently multiple times in different parts of the net-
work. In these various neural network architectures, modularity is functional, with
behaviors and capabilities existing in individual neurons or in groups and triggered
when necessary. ANT facilitates evolution of this capability by allowing for regula-
tory functionality that enables dynamic activation and inhibitions of neurons within
the tissue. Groups of neurons could be easily activated or shut-off through a coarse-
coding process. Furthermore, with the ANT+SCC model, we allow for evolution of
both spatial and functional modularity. Spatial modularity is possible with the SCC
model, since we may get specialized sensory neurons that find spatial sensory pat-
terns. The output from these sensory neurons are used as input by various groups of
neurons active within ANT. These sensor neurons act as specialized feature detec-
tors looking for either color cues or resources.

Comparison of the various evolvable control system models indicates that con-
trollers with an increased ability to generalize, evolve desired solution with far fewer
genetic evaluations. The CA lookup table architecture lacks generalization capabil-
ity and performed the worst. For the CA lookup table, evolved functionality needs to
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be tuned for every unique combination of sensory inputs. A regular fixed topology
network performed better, but since the topology had no capacity to increase in size
or selectively activate/inhibit neurons within the network, it needed to tune most of
the neurons in the network towards both helping perform input identifications or ac-
tions and preventing these same neurons from generating spurious outputs. Thus the
same capabilities may have to be acquired by different neurons located in different
parts of the network requiring an increased number of genetic evaluations to reach
a desired solution.

The standard ANT architecture can quickly shut off (mask out) neurons generat-
ing spurious output and thus does not require having sequences of mutation occur,
tuning each neuron within the tissue to acquire compatible (or similar) capabili-
ties or remain dormant. Thus certain networks of neurons within the tissue can ac-
quire and apply a certain specialized capability (Fig. 16), while most others remain
dormant through the regulatory process. Hence within ANT, increased functional
generalization is achieved through specialization. With the fixed topology neural
network, the net effect of all the neurons having to be active all the time implies
that the controllers have to evolve to individually silence each of the spurious neu-
rons or acquire the same capabilities repeatedly, thus implying reduced functional
generalization.

ANT+SCC can generalize even further. Apart from being able to selectively ac-
tivate/inhibit neurons, it can also choose to receive a coarse or fine representation
of the sensory input. In other words, it can perform further sensor generalization.
A coarse representation of the sensory input in effect implies some degree of gen-
eralization. The priority filtering functionality prioritizes certain sensor states over
others, while the coarse coding representation selects a subset of the inputs to send
to the filter. The resultant input preprocessing facilitates finding and exploiting un-
derlying patterns in the input set. The net effect is that the controller does not have
to deal with as many unique conditions since the number of unique sensory input
combinations seen by the ANT controller is reduced by SCC. This in turn facili-
tates evolution of controllers that require fewer generations to reach a desired solu-
tion. At the same time, over-generalization of the sensory inputs is problematic (see
ANT+SCC+CMP control experiment 2). By imposing coarse receptive fields and
preventing coarse-coded interactions the controllers may miss key (fine) features
through prioritized filtering. Hence, although the sensory input space may effec-
tively have shrunk, through over-generalization valuable information is lost. These
results justify the need for representations that selectively increase or decrease gen-
eralization of sensory input through coarse-coding.

This increased ability to generalize by the ANT+SCC model also seems to offset
the increase number of parameters (increased search space) that needs to be evolved.
Herein lies a tradeoff, as a larger search space alone may require a greater number
of genetic evaluations to reach a desired solution, but this may also provide some
unexpected benefits. In particular, a larger space may help in finding more feasible
or desirable solutions than those already present and may even reduce the necessary
number of genetic evaluations by guiding evolution (as in the ANT+SCC case). As
pointed out, ANT+SCC with its ability to further generalize sensory input appears to
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provide a net benefit, even though it needs to be evolved with additional parameters
(in comparison to the standard ANT model).

This benefit is also apparent when comparing the baseline ANT controller with
ANT-ordered coupled motor primitives. The additional genomic parameters appears
to be beneficial once again, since the search process has access to more potential
solutions. Furthermore, it should be noted that these additional degrees of freedom
within the ANT+SCC controller do not appear to introduce deceptive sensory inputs
or capabilities. Deceptive inputs and capabilities can slow down the evolutionary
process, since the evolving system may retain these capabilities when they initially
provide a slight fitness advantage. However, these functionalities can in turn limit
or prevent the controllers from reaching the desired solution. Thus in effect, the
evolving population can get stuck in a local minimum, unable to transcend towards
a better fitness peak.

7 Conclusion

This chapter has reported on a number of experiments used to automatically gen-
erate neural network based controllers for multirobot systems. We have shown
that with judicious selection of a fitness function, it is possible to encourage self-
organized task decomposition using evolutionary algorithms. We have also shown
that by exploiting hierarchical modularity, regulatory functionality and the ability
to generalize, controllers can overcome tractability concerns. Controllers with in-
creased modularity and generalization abilities are found to evolve desired solutions
with fewer training evaluations by effectively reducing the size of the search space.
These techniques are also able to find novel multirobot coordination and control
strategies. To facilitate this process of evolution, coarse-coding techniques are used
to evolve ensembles of arbitration neurons that acquire specialized functionality.
Similar techniques are used to evolve sensor-filter configurations. Both techniques
facilitate functional and spatial modularity and generalization. This combination al-
lows for a methodical approach to control development, particularly one where the
controller and robot sensory configurations can be automatically generated starting
from a blank slate, where the designer can be largely relieved of the design process
and where detailed models of the system or environment can be avoided.
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