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Abstract— Autonomous robotic excavation has often been
limited to a single robotic platform using a specified excavation
vehicle. This paper presents a novel method for developing
scalable controllers for use in multirobot scenarios and does not
require human defined operations scripts nor extensive model-
ing of the kinematics and dynamics of the excavation vehicles.
Furthermore, the control system doesn’t require specifying an
excavation vehicle type such as a bulldozer, front-loader or
bucket-wheel and it can evolve to select for an appropriate
choice of excavation vehicles to successfully complete a task. The
“Artificial Neural Tissue’” (ANT) architecture is used as a con-
trol system for autonomous multirobot excavation and clearing
tasks. This control architecture combines a variable-topology
neural-network structure with a coarse-coding strategy that
permits specialized areas to develop in the tissue. Training is
done in a low-fidelity grid world simulation environment and
where a single global fitness function and a set of allowable
basis behaviors need be specified. This approach is found to
provide improved training performance over fixed-topology
neural networks and can be easily ported onto different robot
platforms. Aspects of the controller functionality have been
tested using high fidelity dynamics simulation and in hardware.
An evolutionary training process discovers novel decentralized
methods of cooperation employing aggregation behaviors (via
synchronized movements). These aggregation behaviors are
found to improve controller scalability (with increasing robot
density) and better handle robot interference (antagonism) that
reduces the overall efficiency of the group.

I. INTRODUCTION

It is remarkable that an army of ants can march lock-step
carrying food, construction material or excavating a network
of tunnels. The collective behaves as one large entity, with
the actions of the individual synchronized towards complet-
ing a global goal. Such behavior in the natural world can
both awe and inspire the roboticist [1]. But how does the
roboticist approach the control of such artificial systems?

Ants and other insects appear to act locally without knowl-
edge of the greater goal. Yet how global consensus emerges
from local behaviors is not well understood. Designing con-
trollers by hand is a daunting task. Previous work in the field
such as [2], [3], [4] rely on task-specific human knowledge
to develop simple “if-then” rules to solve multirobot tasks.
One might well wonder whether devising a control system
by the same means that insects came to acquire theirs is not
a more effective strategy.
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We investigate here a controls architecture inspired by
neural networks and evolved using an artificial Darwinian
process called the “Artificial Neural Tissue” (ANT) frame-
work [5], [6]. This approach exploits machine learning
techniques to obtain the necessary coordination rules to solve
a prespecified task.

The focus of this paper is the extension of the ANT
framework to facilitate concurrent selection of excavation
platforms and controllers to solve a multirobot excavation
task. The controllers can exploit self-organized aggregation,
a mode of cooperative behavior that can limit the effects of
interference among robots in a multiagent setting. Previous
work in this field has shown the need for evolving controllers
that can limit the effects of interference (antagonism) and
perform well with increased density of robots. Aggregation
is an insect phenomenon and results in efficient, well co-
ordinated actions among individuals. The ANT controllers
have access to an extended palette of sensors and generic
basis behaviors. These are merely building blocks that may
be used to acquire aggregation capabilities.

Evolution is driven only by a global fitness function that
measures (global) excavation success. It is up to the ANT
controllers to determine what excavation platform to use and
how best to use a palette of sensors and basis behaviors, from
which the aggregation capability can emerge. Aggregation is
not shaped or guided using a fitness function as in other
work [7], [8]. Instead, this capability is expected to emerge
through self-organization. ANT controllers with aggregation
capability are compared with previously published results
that lack this functionality.

Two of the major concerns in developing multirobot
controllers is scalability and antagonism [9], where multiple
robots trying to perform the same task interfere with one
another and reduce the overall efficiency of the group or,
worse, unable to solve the task. As previously shown, in
a decentralized configuration, increased density of robots
beyond a critical point, reduces overall efficiency due to
antagonism. In nature, there are other strategies that limit
the effects of antagonism. Aggregation via choreographed
movement, as shown here, facilitates minimizing robot-robot
interactions as obstacles to be avoided, thus increasing robot
productivity. Furthermore, this feat is possible without re-
quiring centralized control and coordination. By minimizing
antagonism, it is possible to increase further the density of
robots in a given workspace. This in turn provides important
benefits, notably increased redundancy and parallelism.

We shall begin with a short background on robotic exca-



vation followed by details on the implementation of ANT
for the task at hand. This is followed by discussion of the
training process and analysis of the controller in simulation
and in hardware.

II. BACKGROUND

In terrestrial settings, autonomous excavation has often
been limited to a single robotic platform, with support ve-
hicles for loading and unloading [10]. Digging is performed
using hand coded operational scripts that decompose a spec-
ified task into repetitive excavation and truck loading cycles.
Other approaches are devoted to modeling kinematics and/or
dynamics of the excavation vehicles [11] and simulating their
performance. The ANT controllers presented here are used
in a multirobot scenario and are trained in a low-fidelity grid
world simulation environment.

The ANT framework allows for scalable control of mul-
tiple excavation platforms towards achieving a specified
global goal and is a synthesis of several collective robotics
concepts. Collective robotic controllers typically mimic the
mechanisms used by social insects. These include the use
of templates, stigmergy, aggregation and self-organization.
Templates are environmental features perceptible to the in-
dividuals within the collective [12]. In robotic applications,
template-based approaches include the use of light fields
to direct the creation of linear walls [13]. Stigmergy is
a form of indirect communication mediated through the
environment [14]. Stigmergy has been used extensively
in collective-robotic construction, including blind bulldozing
[3], box pushing [2], heap formation [15] and tiling pattern
formation [16]. Aggregation is a process of clustering of
units into a mass or whole. This functionality uses two
basic mechanisms, positive and negative feedback, that result
in attraction towards a source or repulsion [7], while self-
organization describes how local or microscopic actions give
rise to a macroscopic structure in systems that are not in
equilibrium [17].

The collective robotic and autonomous excavation works
cited earlier excluding [16] rely on either user-defined,
deterministic ‘if-then’ rules, or on stochastic behaviors. In
both cases, designing these controllers is an ad-hoc process
that relies on the experimenter’s or operator’s knowledge of
the task at hand. However, for collective robotic tasks, the
global effect of local interactions is often difficult to gauge,
and the specific interactions required to achieve a global
consensus may be counterintuitive. Thus at this stage of
the field’s development, hand-coded controllers are derived
through trial and error (manually).

One approach to reducing the amount of trial and error
done by hand is to use Evolutionary Algorithms to train the
robot controller. Fixed topology neural networks are often
used as the scheme allows for plasticity and generalization
unlike lookup-table approaches [16]. Variable-length neural-
network topologies like ANT provide added benefits such
as allowing for improved generalization of sensory input,
improved scalability over fixed-network topologies, and al-
lowing more extensive task decomposition capability [5], [6].

More important, for excavation, ANT allows for both sensor
and behavior extensibility and is not constrained to a specific
digging platform.

We also argue that increased controller flexibility may be
obtained by allowing for aggregation behaviors. In nature,
aggregation behaviors are used by a wide range of organisms
including bacteria, insects, birds and mammals to increase
the chance of survival (by herding) or through improved
efficiency in locomotion. Earlier works in the field use fitness
functions that explicitly encourage aggregation to perform
clustering, foraging [7] and collective transport [18]. A few
of these experiments were realized in hardware using s-bots
[19] that have grappling actuators, enabling multiple robots
to be physically linked [20], [8].

III. ARTIFICIAL NEURAL TISSUE MODEL

The ANT architecture (Figure 1) presented in this pa-
per consists of a developmental program, encoded in the
“genome,’ that constructs a three-dimensional neural tissue
and associated regulatory functionality. The tissue consists
of two types of neural units, decision neurons and motor-
control neurons. Decision neurons are fed sensory input and
dynamically activate and inhibit (mask) groups of motor neu-
rons using a simulated chemical signalling scheme. Groups
of motor neurons activated by the decision neurons are fully
connected to the sensory input and in turn produce controller
outputs, that can trigger a set of basis behaviours. Further
details on the ANT framework can be found in [5], [6].
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Fig. 1. Synaptic connections between motor neurons and operation of
neurotransmitter field.

IV. EXPERIMENTAL SETUP

The excavation task is intended to demonstrate the fea-
sibility of autonomous teams of robots digging holes and
clearing landing pads for lunar base construction. It can
be argued that emergent task decomposition is necessary to
accomplish the task given a global fitness function. A typical
layout of the simulation experiment area used for training



is shown in Figure 2. The experiment region or workspace
is modeled as a two-dimensional grid environment with
each robot occupying four grid squares. For this task, it
is argued that the controller needs to possess a number
of capabilities to complete the task, including interpreting
excavation ‘blueprints’, performing layered digging, avoid
burying or trapping other robots, clearing and maintaining
excavation routes. Each robot controller has access to a goal
map that defines the location of the dump area and target
depth of the excavation area (Figure 2). The fitness function
f for the task is given as follows:
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where I and J are the dimensions of the entire area and
ijl Zle ¥;; > 0 and 9, ; = 1 if grid square (i,7) is
to be excavated and O otherwise; g; ; is the target depth and
h;,; is the current regolith depth.
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Fig. 2. An example goal map consisting of an excavation area surrounded
by a dump area.

A. Excavation Robot Model

For these experiments, the controllers are homogenous
(i.e., a single controller is replicated for use on each robot),
decentralized and make use of local sensor data to complete
the task. The inputs to the ANT controller are shown in Ta-
ble I and Figure 3. The robots have access to current position
(z,y) from localization scans performed in simulation. The
variable z is computed through integration of changes in
depth values. The discretized x and y coordinates are used
to look up the goal depth g, , of each grid square region in
front of the robot.

All raw input data are discretized and fed to the con-
troller. Z...Z4 and FZ;... F'Z, are obtained using sim-
ulated ground scans. A set of simulated sensors are used
to detect obstacles at the front and back (Si, S5). Robot
orientation, heading and whether a robot is stuck or not are
represented using 7'Lq, D; and ST} respectively. In addition,
the controllers can perform aggregated group actions that we
describe below. Alignment sensors (A;...A4) are used to
determine if neighboring robots are in alignment position.
The robots also have access to one memory bit (M), that
can be manipulated using some of the basis behaviors.

Table II lists the basis behaviors the robot can perform (in
order) within a single timestep. These prespecified behaviors
are generic and can be used for many different tasks, with
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Fig. 3. Robot input sensor mapping (with bulldozer implement) for the
simulation model.

various excavation implements. It is up to the ANT controller
to determine when to execute these basis behaviors (using
sensory input) to solve the overall task. Furthermore, the
excavation behaviors allow for actuation of an implement.
For the bulldozer implement, the blade can be raised or
lowered to one of four positions. Fine adjustments are made
using PID control to ensure a constant force is met. While for
the front-loader and bucket-wheel, the lower most implement
position actuates a ‘dig and scoop’ action that fills a bucket
with regolith. For the bucket-wheel, the rotating buckets
when lowered will dig, scoop and accumulate the regolith
into an attached tank. Behavior 4 is also implemented
differently according to the attached implement. For the
bulldozer implement, moving backwards results in pushed
regolith being ‘dumped.” However for the front-loader, the
bucket is raised and tilted downwards to ‘dump’ accumulated
regolith. While for the bucket-wheel, the attached tank is
opened and tipped over much like a dump truck towards the
back. The capacity of the bucket-wheel tank, front-loader
bucket and volume of soil pushed by the bulldozer is set to
the same value (26 units), to make experimental comparisons
between the implements meaningful.

For the aggregation capable robots, once two robots are in
alignment position and behavior 2 is triggered and behavior
3 is not triggered (Table II), then the AS; value for both
robots is set to 1. A group of robots detach from aligned
state (AS; = 1) once all members of the group trigger
behavior 3 and behavior 2 is not triggered. This capability
allows for positive feedback, in which the robots choose
to aggregate and negative feedback whereby they vote to
detach and part ways. When a group of robots are in aligned
state (AS; = 1), motor behaviors such as ‘move forward’,
‘turn left 90°” and ‘turn right 90°° are performed through
consensus (Figure 4). Each member of the group triggers
the ‘move forward’ behavior for the aggregated group to
move forward otherwise the ‘move forward’ triggered by
some members are vetoed.



TABLE I
ANT CONTROLLER SENSOR INPUTS

[ Variable | Function | States i
Z1..04 Depth Sensing Relative to Goal Depth Level, Above, Below, Don’t Care
FZy,FZ> Depth Sensing Relative to Ground Above, Below, Level
B1 Excavation Implement Position Above, Level, Below Ground, Home
S1 Front Obstacle Detection Obstacle, No Obstacle
So Back Obstacle Detection Obstacle, No Obstacle
D1 Heading North, East, West, South
TL1 Robot Tilted Downwards True, False
STy Robot Stuck True, False
Aq.. Ay Robot Alignment Position Alignment Position, Not in Alignment Position
AS, Robot Alignment Status Not Aligned, Aligned
M,y Memory bit 0, 1
TABLE II
ANT CONTROLLER BASIS BEHAVIORS
[ Behavior [ Function | States i
1 Set Throttle Set rover throttle to high otherwise remain nominal
2 Want to Align Intention of rover to go into “align state”
3 Not Want to Align Intention of rover to exit out of “align state”
4 Move Forward Move one grid square forward
5 Dump and Move Backward Dump regolith and move one grid square backward
6 Random Turn Randomly Turn 90° right or Turn 90° left
7 Turn Right Turn 90° right
8 Turn Left Turn 90° left
9 Implement position: Above Set excavation implement above ground d cm
10 Implement position: Below Set bulldozer implement below ground d cm or use bucket-
wheel/front -loader implement to scoop regolith.
11 Implement position: Level Set excavation implement level to ground
12 Implement position: Home Set implement to home position (makes no contact with soil)
16 Bit Set Set memory bit 1 to 1
17 Bit Clear Set memory bit 1 to 0

Move Forward Move Forward Turn Right Turn Left
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Fig. 4. Robots (shown with bulldozer implement) in aligned state
performing motor behaviors. Note that the ‘move forward behavior can be
performed in two configurations (side by side and one behind another).

B. Simulation Parameters

Darwinian selection is performed based on the fitness
value of each controller averaged over 100 different ini-
tial conditions. The population size for the experiments is
P = 100, with crossover probability p. = 0.7, mutation
probability p,,, = 0.025 and a tournament size of 0.06P. The
fitness f for each controller is calculated for an excavation
area to be dug to a goal depth of d below ground and area
spanning [ X w squares. A 100 different scenarios are used
during training, with excavation areas varying from 4 x 4
up to 12 x 12 squares and with d = 1 or 2. The dump site
either surround the work site as in Figure 2 or is located in a
line on the eastern side of the work site. Initially, the robots
are placed in one of two configurations during training. In
one configuration, the robots are randomly dispersed over
the work site, while in the other, the robots are placed in a
row next to a corner.

C. LEGO® Hardware Experiments and Environment

The ANT controllers are trained (evolved) in a grid world
simulation environment written in C/C++ (Figure 5 left).
The best individuals from several evolutionary runs are then
tested in Digital Spaces™, a high-fidelity simulation envi-
ronment and on LEGO® Mindstorm robots. The LEGO®
hardware experiments are intended to verify robot-robot in-
teractions and are not sufficient to validate excavation perfor-
mance on regolith. Regolith excavation performance is tested
within the Digital Spaces™ simulation environment. For
these hardware experiments, three LEGO® Mindstorms™
NXT Robots have been used (Figure 5 right). Each robot
consists of a pair of servo drive motors in a differential
drive configuration, a gyro that records the rate of change
of heading, a compass, a sonar unit that measures distance
to obstacles and a one degree of freedom blade. The ANT
controller for each robot is run on a dedicated laptop and it
communicates using a wireless Bluetooth interface.

After initialization, the robots enter a four-step loop until
the experiment is completed. For the first step, input data
is collected from the sensors onboard each robot and each
robot’s local map is updated by an overhead camera system.
This is followed by the second step, where ANT chooses
a series of basis behaviors to perform. In the third step the
chosen behaviors are executed, and in the final step heading
is measured using the compass and corrected using propor-
tional control. The move forward and backwards behaviors
adapted for the LEGO® robots uses odometry to measure
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Fig. 5. (Left) Hardware validation process of the evolved ANT controllers.
(Right) LEGO® Robot Configuration

distance traveled and proportional control using the onboard
gyro to maintain a straight path. The turn 90° to the left
or right behaviors also uses proportional control with the
onboard gyro.

An overhead camera system was set up using a Logitech®
webcam with 640x480 resolution. Colored Styrofoam
peanuts is used to represent regolith and colored cardboard
was mounted on top of the robots to distinguish each one
for use by the overhead system. With this configuration, a
naive Bayes classifier is simultaneously able to detect and
distinguish resources and robots. Using overhead cameras,
each robot gets an updated reading of Zy...7Z4, FZ,, FZs,
STy, Sy and Aj...A4. Algorithms were written that could
take advantage of this color detection to provide robot local-
ization, robot heading and styrofoam location. The overhead
system can also be used to maintain alignment between the
aggregated robots.

D. Digital Spaces™ Simulation

The ANT-based excavation controllers are demonstrated
using high-fidelity simulations within Digital Spaces™, an
off-the-shelf commercial 3-D Lunar simulation tool. Once
the controllers have acquired the necessary traits from the
evolutionary training procedure, they are ported onto the
Digital Spaces™ simulation environment for further testing.
Robotic hardware is represented with increased fidelity and it
includes sensor interfacing, and deformable terrain modeling.
Deformable terrain modeling allows for realistic regolith-
tool and wheel-track-terrain interactions. This physics-based
virtual environment facilitate prototyping and testing of alter-
native digging concepts and can potentially reduce hardware
experiment costs. The goal map dimensions used for these
simulations is a volume 8 X 8 x 1.5 m deep. The robots
modeled in Digital Spaces™ are four-wheeled skid steered
(holonomic) systems with two separate drive motors on each
side. Each rover can deliver up to 300 W of power. Three
different implements, namely front-loader, bulldozer blade
and bucket-wheel have been mounted on a common vehicle
chassis to make comparisons meaningful (Figure 6).

The simulated lunar terrain is divided into rectangular
boxes, representing regolith containers, that rise and fall to
reflect interaction with the excavation tool. When the bucket

shape in the simulator comes in contact with one of these
boxes, a volumetric friction procedure that computes the
Balovnev forces acting on the blade is executed [21]. The
effects of wheel slippage, sinkage, cutting resistance and
lunar gravity are all accounted for in the simulation [22].

Fig. 6. Digital Spaces™ simulation models of a rover equipped with a
bulldozer blade (left), front-loader (center) and bucket-wheel (right).
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Fig. 7.  Fitness performance vs. time of the evolved ANT controllers
(bulldozer implement) within the grid world environment.
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(bulldozer implement) from Figure 7 using Digital Spaces

In Digital Spaces™, it is assumed that an external local-
ization system provides the rovers with z,y, z position and
orientation. However, the relative depth of regolith in front of
the rover is obtained using simulated infrared range sensors
that provides a sampling of depth value within predesignated
regions as shown from Figure 3. To ensure consistency
between the training simulation and the Digital Spaces™
environment, fitness is monitored for 1, 2, 3, and 4 bulldozer
simulations. The results are shown in Figures 7 and 8. The
two simulations largely agree but differences should also be
noted. It should be observed in the gridworld simulations, the
fitness plateaus once the robots reach the goal depth. While
within Digital Spaces™, the robots continue to compress
and/or scrape off the regolith even after reaching the goal
depth. This is because the blade is kept level once the
controller reaches the goal depth and, in the Digital Spaces™



simulation environment, slight errors in the contact modeling
results in some excavation of the regolith over prolonged
periods. This difference can be minimized with more precise
tuning of blade position in Digital Spaces™ to match the
ideal conditions of the grid world simulation.

V. RESULTS AND DISCUSSION

We first analyze the evolutionary training performance of
the ANT controllers using the bulldozer blade implement.
Figure 9 shows the fitness (population best) of the system
evaluated at each generation of the training process. For
the evaluations, the time provided is [ x w x h timesteps,
where [, w, h is the length, width and depth respectively. One
notices an improvement in fitness with increased number of
robots. With more robots, each robot has a smaller area to
cover in performing excavation. The evolutionary runs also
shows a point of diminishing returns is reached. Beyond
this point, additional robots have a minimal effect on system
performance for a constant work area.

The performance of randomly initialized fixed-topology,
fully connected networks with up to 40 hidden and output
neurons is shown in Figure 10. While this is not intended
to be a thorough comparison, in a fixed-topology network
there tends to be more ‘active’ synaptic connections present
(since all neurons are active), and thus it takes longer for each
neuron to tune these connections to the sensory inputs. ANT
is an improvement as the topology is evolved and decision
neurons learn to mask out noisy neurons. The net result is
that ANT requires fewer genetic evaluations to evolve desired
solutions compared to standard neural networks.
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Fig. 9. Evolutionary performance comparison of ANT based solutions

(aggregation capable using bulldozer implement) for between 1 and 5 robots,
population best averaged over 30 evolutionary runs.

A. Implement Comparison

Figure 11 shows the fitness (population best) of the system
evaluated at each generation of training. The time provided
for evaluation is [ x w timesteps, where [ and w is the
length and width respectively. This time is shorter than the
previously described experiments that require multiple ex-
cavation passes. For comparison, we consider the controller
performance with a preset vehicle implement (i.e., bucket-
wheel or front-loader) and a situation where the vehicle
implement selection is coevolved with the controller. In
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Fig. 10. Evolutionary performance comparison of ANT based solutions
with randomly initialized fixed-topology neural networks for 3 and 4 robot
configurations, population best averaged over 30 evolutionary runs.

this latter scenario, an additional parameter within the ANT
genome specifies vehicle implement type. Comparison of
the preset vehicle implements show that the bucket-wheel
option has a substantial performance advantage over the other
two options. This advantage is attributed to the fact that the
bucket-wheel has a tank to store and carry excavated regolith
while the bulldozer does not. At times, it may unavoidable
that a bulldozer pass be abandoned due to obstacles obstruct-
ing a pathway and thus results in leaving behind excavated
regolith. Bulldozer robots require having to excavate an area
in a layered fashion to avoid having to accumulate too much
regolith and stalling the vehicle. In contrast, with a bucket-
wheel, the vehicle can remain stationary and the rotating
blade can churn and deposit the regolith into its tank. This
enables the vehicle to reach the goal depth without having
to do multiple layered passes. These factors simplify control
actuation and facilitates finding efficient solutions within
fewer genetic evaluations. The front-loader shares some
functionality with the bucket-wheel, namely digging and
holding regolith. However, the front-loader cannot match the
bucket-wheel in excavating to a goal depth while remaining
stationary. The comparison indicates that the ability to store
regolith after being excavated improves fitness performance.
This is expected because otherwise additional time is spent
interrupting an excavation pass by dumping the material
and then resuming the excavation process. Interestingly,
ANT controllers with a gene-specified excavation implement
match the performance of the controllers with the bucket-
wheel implement after 4,000 generations. This is despite the
fact the search space has increased with one additional pa-
rameter, namely choice of vehicle implement. The additional
parameter allows effective coevolution of the best implement
and controller. This result is particularly useful when it is not
obvious what excavation implement is optimal for a given
task.

B. Controller Scalability

It is found that with aggregation capability, the system
performance improves with increased density of robots per
digging area (Figure 12). This is in contrast to our re-
sults with aggregation functionality turned off as shown in
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Fig. 11.  Evolutionary performance comparison of ANT-based solutions

for various excavation implements. The bucket-wheel implement shows
significant performance improvement over the other implements. The ANT
selected implement also tends towards selecting bucket-wheel in excess of
80% of the time at 4,000 generations.

Figure 13. Beyond a certain robot density, the problem of
antagonism reduces the overall system performance. It is
evident that the evolutionary search process can find the
necessary excavation solutions without explicit shaping of
the fitness function and furthermore it can fine tune these
coordination behaviors depending on evolved robot densities.
The ANT controllers with aggregation functionality (Fig-
ure 12) show better performance with increased robot density
compared to the ANT controllers without this functionality
(Figure 13). However, these aggregation controllers do show
decreased performance for lower densities, due impart to
acquired traits from training. In this scenario, the robots
have acquired skills to work efficiently in larger groups
and when faced with fewer robots, these evolved skills are
less efficient. Controllers trained at lower densities show a
significant decrease in fitness for higher rescaled densities
because these controllers lack the experience of using excess
robots. For a system designer, it is not obvious as to how
many excavation robots are needed to complete the task
in the shortest time. Using the aggregation capable rovers,
one has the advantage of overestimating the number of
robots without facing reduced system performance. Having
an excess number of robots allows for the system to better
handle erroneous maneuvers by a single individual. As the
training proceeds, the population learns to correct erroneous
maneuvers, hence making better use of the each robot.

08

08

07

08

0s

Fitness

0 Evolved Solution

1 Robot
2 Robots

A
03 B
C 3 Robots
D
E

02 4 Robots

5 Robots

01

3 E3 3 I

0 1 2 3 4 H 6

Robots (Rescaled)

©

Fig. 12.  ANT based solutions evolved from 1 to 5 robots in aggregation
mode and evaluated for between 1 and 10 robots (8 x 8 excavation area,
average 1.5d cm depth, 100 runs).
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excavation area, average 1.5d cm depth, 100 runs)

C. Behavioral Adaptations
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Fig. 14.  Simulation snapshots of an excavation task simulation using
aggregation capable ANT controllers (5 robots) after 0, 16, 25, 45, 47,
65 timesteps. Shaded robots are in aggregation mode.

Fig. 15. Snapshots of three robots performing the excavation task using
an ANT controller in aggregation mode (14 X 8 excavation area, dump site
on eastern side). Frame 1 (inset) shows the excavation area in light blue
and dump area in orange. Frame 3 shows robots turning at the boundary of
the excavation area before facing the dump site. Frame 4 shows the robots
making a left turn after dumping the peanuts (regolith).

It is found that the aggregation capable ANT controllers
reduce the effects of antagonism by permitting an excess
number of robots to act in a ‘neutral’ fashion (Figure 14).
These excess robots avoid being in the way of other robots,
or detach and remain outside the excavation area. In both
cases, the system self-organizes to reach a desired robot



Fig. 16. Snapshots of three robots performing the excavation task using
an ANT controller in a random initial position (10 X 15 excavation area,
dump site on eastern side). Frame 2 shows the robots having pushed the
styro peanuts (regolith) to the eastern side. Frame 3 shows robots clearing
an excavation path parallel to the dump site. Frames 4, 5 shows the robots
systematically clearing areas missed from previous excavation passes.

Fig. 17. Digital Spaces™ simulation snapshots showing three randomly
positioned front-loader robots performing excavation of a rectangular region
(surrounded by dump sites) along with an attached ramp.

density. Communication between the robots occur in a num-
ber of stigmergic ways. Similar to the resource gathering
experiments, individuals communicate by manipulating the
environment. The aggregated robots indirectly communicate
via their group movements (by choosing to veto or support
aggregated group decisions). The controllers also learn to
exploit templates by correctly interpreting the goal maps
(excavation blue prints). This is used to determine when
to lower, level or raise the blade. Once a robot senses a
dump area in front, the controller executes a combination of
‘move backward’ followed by a ‘turn left’ or ‘turn right’ to
offload the excavated material. Ongoing experiments using
the LEGO® robots (Figure 15, 16) and Digital Space™ sim-
ulations (Figures 17) show the robots correctly interpreting
a given goal map and dump regolith in the designated areas.

VI. CONCLUSIONS

The paradigm of an “Artificial Neural Tissue” (ANT)
framework has been successfully applied towards the de-
velopment of controllers for a simulated excavation task.
These controllers have been developed and initially evaluated
in computer simulation using a model of the excavation
problem and then tested on hardware in a 2-D laboratory
environment. The training of the ANT controllers requires
a global fitness function that measures the performance of

the controller and a generic set of basis behaviors. Because
less knowledge is used a priori in the training and con-
troller development cycle, an ANT architecture may select a
suitable excavation implement and discover novel solutions
that might otherwise be overlooked by a human supervisor.
The ANT controllers have also been compared with fixed-
topology neural network architectures and produce fitter
solutions in fewer genetic evaluations. It is evident that the
evolutionary search process can indeed find efficient exca-
vation solutions using self-organized aggregation behaviors.
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