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Abstract. Reactive multiagent systems are shown to coevolve with ex-
plicit communication and cooperative behavior to solve lattice formation
tasks. Comparable agents that lack the ability to communicate and coop-
erate are shown to be unsuccessful in solving the same tasks. The agents
without any centralized supervision develop a communication protocol
with a mutually agreed upon signaling scheme to share sensor data be-
tween a pair of individuals. The control system for these agents consists
of identical cellular automata handling communication, cooperation and
motion subsystems. Shannon’s entropy function was used as a fitness
evaluator to evolve the desired cellular automata. The results are de-
rived from computer simulations.

1 Introduction

In nature, social insects such as bees, ants and termites collectively manage
to construct hives and mounds, without any centralized supervision [1]. A de-
centralized approach offers some inherent advantages, including fault tolerance,
parallelism, reliability, scalability and simplicity in agent design [2]. All these ad-
vantages come at a price, the need for multiagent coordination. Adapting such
schemes to engineering would be useful in developing robust systems for use in
nanotechnology, mining and space exploration.

In an ant colony, each individual is rarely independently working away with-
out explicitly communicating with other individuals [1]. In fact, it is well known
that ants and termites use chemicals to communicate information short dis-
tances. Cooperative effort often requires some level of communication between
agents to complete a task satisfactorily [5]. The agents in our simulation can
take advantage of communication and cooperation strategies to produce a de-
sired ‘swarm’ behavior.

Our initial effort has been to develop a homogenous multiagent system able
to construct simple lattice structures (as shown in fig. 1). The lattice forma-
tion task involves redistributing a preset number of randomly scattered objects
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(blocks) in a 2-D grid world into a desired lattice structure. The agents move
around the grid world and manipulate blocks using reactive control systems with
input from simulated vision sensors, contact sensors and inter-agent communi-
cation. Genetic algorithms are used to coevolve the desired control subsystems
to achieve a global consensus. A global consensus is achieved when the agents
reach a consensus among the collective and arrange the blocks into one observ-
able lattice structure. This is analogous to the heap formation task in which a
global consensus is reached when the agents collect numerous piles of objects
into one pile [3].

Fig. 1. The lattice structures shown include the 2×2 tiling pattern (left) and the 3×3
tiling pattern (right).

2 Related Work

The object of our study has been to determine if localized communication com-
bined with cooperation would produce useful ‘swarm’ behavior to complete a
predefined task. Often cooperative tasks involving coordination between numer-
ous individuals such as table-carrying, hunting or tribal survival depend on ex-
plicit communication [5]. Communication is required for such cooperative tasks
when each individual’s actions depend on knowledge that is accessible to others.
Like the heap forming agents, our agents can detect objects over a limited area
[3]. Earlier works into communication and cooperation were based on a fixed
communication language, which may be difficult to develop and may not even
be an optimal solution [7–9].

Adaptive communication protocols have been developed combining a learning
strategy such as genetic algorithms to develop a desired set of behaviors [5, 10].
Maclennan and Burghardt [10] evolved a communication system in which one
agent observed environmental cues and in turn ‘informed’ other agents. Yanco
and Stein [5] used two robots, with the ‘leader’ robot receiving environmental
cues and informing the ‘follower’ robot. To our advantage, coevolution has been
shown in [6] to be a good strategy in incrementally evolving a solution which
combines various distinct behaviors. Within a coevolutionary process competing
populations (or subsystems) spur an ‘arms race’ where one population tries to
adapt to the ‘environment’ created by the other and vice-versa until a stable
solution is reached. The effect of this parallel evolution is a mutually beneficial
end result, which is usually a desired solution [6].
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3 Lattice Pattern Formation

The multiagent system discussed in this paper consists of agents on a 2-D grid
world, with a discrete control system composed of cellular automata. Cellular
automata (CA), it has been shown, provide a simple discrete, deterministic model
of many systems including physical, biological and computational systems [13,
14].

Determining a set of local rules by hand that would exhibit a useful emergent
behavior is somewhat difficult and a tedious process. By comparison, evolving
such characteristics would produce desired results, provided the right fitness
function is found. Using Shannon’s entropy function, we devised a system able
to distribute the objects (blocks) uniformly (a necessary step in forming the 3×3
tiling lattice pattern). The 2-D grid world is divided into M 3×3 cells, Aj , where
the fitness value, fi, for one set of initial condition is given as follows:

fi = s ·
∑J

j=1 pj ln pj

ln J
(1)

where, s = −100 and is a constant scaling factor, i is an index over many sets
of random initial conditions and

pj =
n(Aj)∑J

j=1 n(Aj)
(2)

where n(Aj) is the number of blocks in cell Aj . When the blocks are uniformly
distributed over J cells, we have fi = 100. The total fitness, ftotal, used to
compare competing CA lookup tables is computed as follows:

ftotal =
∑I

i=1 fi

I
(3)

where fi is calculated after T time steps and I is the number of simulations.

4 The Agent

Cooperative behavior between a pair of agents could be visualized as two agents
being physically bolted together. To verify whether evolutionary pressure would
encourage such a configuration, the agents have the option to stay paired or
separate after each time step. Each agent is equipped with 3 bumper sensors,
4 spatially modal vision sensors [1, 3] and 2 contact sensors wired to an accom-
panying trolley. The vision sensors are fitted to allow agents, blocks and empty
space to be distinguished. Once the agent has chosen to ‘pair up’ with a neigh-
boring agent, the physical behavior is looked up based on the input from the
vision sensors and the data received from the communication session.

There are four physical behaviors which are defined as follows:
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Fig. 2. (left) Each agent can detect objects (blocks,other agents or empty space) in
the four surrounding squares as shown. The agent can put down a block from squares
labelled (1) and pick up a block from squares labelled (2). (center left) Robot shown
moving forward. (center right) Robot rotates counter-clockwise. (right) Contact sensors
can detect other agents or obstructions in regions marked (A) and (B).

I Move: The agent moves diagonally to the upper left corner if the front and
left-side trolley bumper detect no obstacles otherwise the agent rotates left
as shown in fig. 2 (center).

II Manipulate Object: The choice of whether to put down or pick up a block
is made based on whether the agent is already in possession of a block. If
the agent is unable to pick up or put down a block, the ‘move’ command is
activated.

Fig. 3. (left) A pair of agents moving forward. (center),(right) Paired agents shown
rotating counterclockwise.

The agents communicate one bit of information depending on what is de-
tected using the vision sensors. The vision sensors can distinguish between an
agent, a block and an empty space. The agent as shown in fig. 2 is equipped with
four vision sensors with 3 possible outcomes each (block, agent, empty space),
two possible outcomes for the agent (carrying a block or not) and an additional
two states during a communication session (receive a 1 or 0).

When a pair of agents chooses to move forward, the collective movement is
the vector sum of the diagonal movement of each individual agent (fig. 4). The
contact sensors can detect a block, agent (in correct position) or empty space
in two equally spaced regions next to the agent (fig. 2). The Link Lookup Table
entries consist of two basis behaviors: ‘Link’ (paired up) and ‘Unlink’ (separated),
which are defined as follows :

III Link: An agent will link to a neighboring agent once aligned in in one of two
position (shown in fig. 4). The agents are paired only when neither agent is
already paired and both have agreed to ‘link’.
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Fig. 4. (left) (1) and (2) show the two regions used to detect if a neighboring agent is
in position to ‘link’. (Center) Agents in position to ‘link’ and configuration afterwards
(right).

IV Unlink: A pair of agents will ‘unlink’, provided the agents are already
linked and either one of the agent has chosen to ‘unlink’.

The total number of entries in the Physical Response Lookup Table is: 34 ×
2× 2 = 324 entries. The Communication Lookup Table is connected to the four
vision sensors, with 2 possible outcomes (block or no block), resulting in 24 = 16
entries. The Link Lookup Table has two sets of sensors on each side of the agent
with three possible outcomes each (obstacle, agent, empty space), which leads to
32 = 9 entries. In total there are 349 lookup table entries defined for the cellular
automata-based control system.

5 Simulation Results

In our simulations the GA population size was P = 50, number of generations
G = 300, crossover probability pc = 0.7, mutation probability pm = 0.005 and
tournament size of 5 (for tournament selection). For the GA run, the 2-D world
size was a 16 × 16 grid with 24 agents, 36 blocks and a training time of 3000
time steps, where, J = 49 and I = 30 (number of initial conditions per fitness
evaluation).

After 300 generations (fig. 5), the GA run converged to a reasonably high
average fitness value (about 99). The agents learn to pair up and stay paired
during the entire training time within the first 5-10 generations. Fig. 5 (right)
shows the average similarity between the best individual and the population
during each generation. The fitness time series averaged over 1000 simulations
shows a smooth curve (fig. 6), which is used to calculate the emergence time. The
emergence time is defined to be the number of time steps it takes for the system
to have organized itself [11, 3]. At a fitness value of 99, the blocks were well
organized into the 3× 3 tiling pattern and more importantly a global consensus
(one observable lattice) was formed. For the 16× 16 world, the emergence time
was 2353 time steps. Fig. 7 shows some snapshots from a typical simulation at
various time steps. To keep the comparison simple and meaningful, constraints
had to be imposed to ensure a fair chance in arranging a perfect lattice. It was
found when the ratio of agents to blocks was low, a global consensus took much
longer to occur or never occurred at all. When the agents to blocks ratio is high,
the collective effort is hindered by each individual (known to as antagonism) [12]
and a global consensus is never achieved.
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Fig. 5. (left) Convergence history for a typical GA run. (right) CA lookup table Con-
vergence. (in comparison with Best Solution)
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Fig. 6. (left) Average fitness time series over 1000 simulations for the 16 × 16 grid
with 28 agents and 36 blocks. The calculated emergence time is also indicated (right)
Optimal ratio of agents to blocks for problem size of up to 100 × 100 grid.

One of the most cited advantages of decentralized control is the ability to
scale the solution to a much larger problem size. Using the optimal ratio of agents
to blocks, the simulation was performed for an extended 600,000 time steps to
determine the maximum fitness for various problem sizes (up to 100×100 grid).
The maximum fitness value remained largely constant, as expected, due to our
decentralized approach. However, further simulations will need to be conducted
to confirm the scalability of the evolved solutions.

6 Discussion

It is interesting that a framework for communication between agents is evolved
earlier than pair coordination. With the number of lookup table entries for the
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Fig. 7. Snapshot of the system taken at various time steps (0, 100, 400, 1600 ). The 2-D
world size is a 16× 16 grid with 28 agents and 36 blocks. At time step 0, neighboring
agents are shown ’unlinked’ (light gray) and after 100 time steps all 28 agents manage
to ’link’ (gray or dark gray). Agents shaded in dark gray carry a block. After 1600 time
steps (far right), the agents come to a consensus and form one lattice structure.

Communication Lookup Table (CLT) being far fewer than the Physical Response
Lookup Table (PRLT), it would be expected for a good solution to be found in
fewer generations. Within a coevolutionary process it would be expected for
competing populations or in this case subsystems to spur an ‘arms race’ [6].
The steady convergence in PRLT appears to exhibit this process. It was en-
couraging to witness our cellular automaton-based multiagent systems evolve
a non-coherent communication protocol, similar to what had been observed by
Yanco and Stein [5] for a completely different task. With their experiment, one
of the two robots was always able to provide orders based on environmental cues
to the ‘follower robot’.

Fig. 8. The alternate configuration considered for solving the 3 × 3 tiling pattern for-
mation task . The agent occupies 4 squares and can detect objects, agents and empty
spaces in 7 squares as shown.

As part our effort to find optimal methods to solving the 3× 3 tiling pattern
formation task, a comparable agent was developed which lacked the ability to
communicate and cooperate. As a result each agent had 7 vision sensors, which
meant 4374 lookup table entries compared to the 349 entries for the agent dis-
cussed in the paper. After having tinkered with various genetic parameters, it
was found the GA run never converged.

In this particular case, techniques employing communication and cooperation
have reduced the lookup table size by a factor 12.5 and have made the GA
run computational feasible. The significant factor is a correlation between the
number of lookup table entries and the number of generations required to reach
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convergence. With the search space being too large, it is suspected the genetic
algorithm was unable to find an incremental path to an optimal solution.

7 Conclusion

Our approach to designing a decentralized multiagent system uses genetic algo-
rithms to develop a set of local behaviors to produce a desirable global consensus.
The agents coevolved with localized communication and cooperative behavior
can successfully form the 3× 3 lattice structure. Comparable agents which have
bigger lookup tables and lack the ability to communicate and cooperate are
unable to perform the same tasks. Our findings show strategies employing coop-
eration, communication and coevolution can be used to significantly reduce the
size of CA lookup tables and make a genetic search more feasible.
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