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Abstract. A coarse-coding regulatory model that facilitates neural het-
erogeneity through a morphogenetic process is presented. The model
demonstrates cellular and tissue extensibility through ontogeny, result-
ing in the emergence of neural heterogeneity, use of gated memory and
multistate functionality in a Artificial Neural Tissue framework. In each
neuron, multiple networks of proteins compete and cooperate for repre-
sentation through a coarse-coding regulatory scheme. Intracellular com-
petition and cooperation is found to better facilitate evolutionary adapt-
ability and result in simpler solutions than does the use of homogeneous
binary neurons. The emergent use of gated memory functions within this
cell model is found to be more effective than recurrent architectures for
memory-dependent variants of the unlabeled sign-following robotic task.

1 Introduction

One of the big challenges in Alife is to design open-ended artificial multicellular
developmental systems that can grow in complexity to solve extensible control
tasks by performing task-decomposition with little or no explicit supervision.
Fundamental to understanding and re-engineering multicellular biological sys-
tems is to determine how functionality is distributed within these systems and
how specialization takes shape.

It has been theorized that exploratory selection/regulation mechanisms, the
process by which selection of parallelized selection of functional outcomes facil-
itates evolutionary adaptability, that is, the ability for genes to be heritable and
selectable phenotypes, less susceptible to lethal mutations and produce novel
traits with fewer mutations [12]. Extensive evidence of exploratory selection
processes has been found in the immune system and this had spurred interest
into how these processes might be at work within the brain [3, 12]. Further-
more, biological evidence hardly points to the notion of a ‘typical’ homogeneous
feedforward binary neurons of the McCulloch-Pitts type. Neurons are, in fact,
complex heterogeneous multistate analog systems with memory.

In this paper, we demonstrate the advantages of these exploratory selec-
tion/regulation mechanisms based on a coarse-coding scheme, inspired by Al-
bus [1], and show evidence of emergent task decomposition and specialization
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occurring at the cellular and gene/protein level within an Artificial Neural Tis-
sue (ANT) framework [16]. The model exhibits cellular and tissue extensibility
through ontogeny, resulting in the emergence of neural heterogeneity, use of
memory and multistate functionality within the ANT framework. Within each
neuron, multiple networks of protein compete and cooperate for representation
through a coarse-coding framework for binding sites. We choose to use coarse
coding as it is a moderately distributed coding scheme that allows for pooling
and redundancy thus helping to render the system robust in the face of noisy
sensor data.

This model, with no explicit supervision and limited task-specific assump-
tions, produces solutions to a variant of the sign-following task found to be
unsolvable with fixed-topology homogeneous artificial neural networks. Fixed-
topology networks that lack regulatory functionality perform poorly in complex
tasks with limited supervision owing to the bootstrapping problem, which causes
premature stagnation of an evolutionary run [13].

2 Background

Artificial developmental systems mimic ontogenic processes from biology and
have been successfully used, with variable-length genomes, to ‘grow’ topologies
and heterogeneous functionality without explicit intervention. ANT is a mor-
phogenetic system with a directly encoded genome and uses gene regulatory
systems (GRNs) for development. Artificial embryogenic systems (L-systems [11]
and cellular-encoding systems [8]) use indirect encoding schemes that involve re-
cursive rewriting of the genotype to produce a phenotype. However, it has been
argued that indirect encoding schemes introduce a deceptive fitness landscape
and result in poor performance for smaller search spaces owing to overhead [15].

Examples of artificial morphogenetic systems include the work by Eggen-
berger [4] and by Gomez and Eggenberger [5], the latter using ‘ligand-receptor
interactions’ to perform cell aggregation. A morphogenetic system was also used
on POEtic by Roggen et al. [14]. Developmental tissue models such as Norgev by
Astor and Adami [2] are also morphogenetic and facilitate cellular heterogeneity.
Cell replication and synaptic connections are formed through a GRN based de-
velopmental and learning system using a genetic-programming-type command
set. However, in our ANT model, regulation continues after development at
the gene/protein and cellular levels. Neuroregulatory functionality is performed
through coordinated release of diffusive neurochemicals resulting in superposi-
tioning of chemical concentration fields (Fig. 1). Other models such as GasNet
allow for volume signaling between neurons using neurochemicals but lack ex-
plicit regulatory functionality [10].

In the coarse-coding cell model presented here, a selection/regulation process
is also at work within protein networks resident in each neuron, thus facilitating
heterogeneity and open-ended growth in complexity of cells. The use of Cellular
heterogeneity may be more biologically plausible but more complex, multistate
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cells do not necessarily present advantages over simpler binary-state cells. Yet,
the use of multistate feedforward and memory neurons may be beneficial.

The need for specialized memory neurons arises from the ‘error decay’ prob-
lem evident with standard recurrent connections for learning processes. A stored
signal remains unprotected from spurious inputs decays or grows (without bound)
making it difficult to recall a signal after many timesteps [6]. Long Short-Term
Memory (LSTM) [9] overcomes this limitation but it is a predefined architecture
consisting of a storage neuron, a reset gate, an input gate (to protect memory
from spurious inputs) and an output gate. However, for the T-maze task (a sim-
pler variant of the sign-following task), it was found that recurrent networks
trained using Enforced Subpopulations (ESP) and Hierarchical ESP (H-ESP)
outperformed a LSTM architecture [7]. LSTM also lacks biological plausibility
and similar memory functions can be obtained without the use of predefined cell
blocks using the coarse-coding cell model.

3 Artificial Neural Tissue and Coarse-Coding Cell Model

The ANT architecture consists of a developmental program, encoded in the
genome that constructs a three-dimensional neural tissue and associated reg-
ulatory functionality (see [17] for details). The tissue consists of two types of
neural units, decision neurons and motor-control neurons. Regulation is per-
formed by decision neurons, which dynamically excite or inhibit motor-control
neurons within the tissue based on a coarse-coding framework (Fig. 1).

Fig. 1. Synaptic connections between motor-control (MC) neurons and operation of

neurotransmitter field.

Our neuron model permits a number nc of messenger-channel protein net-
works (Fig. 2a). Each protein network receives the same inputs x, an n × 1
real-valued column, which represents either sensory data or inputs from other
neurons. These inputs are fed through mj ‘ion channels’ that transform ‘electri-
cal signals’ into various types of ion, the concentration of which are collectively
denoted yj , an mj × 1 real-valued column. The concentrations are given by

yj = Wjx

where Wj is an mj×n real-valued weight matrix associated with the jth protein
network.



4 J. Thangavelautham, G.M.T. D’Eleuterio

Each protein network produces an ‘activation protein,’ whose concentra-
tion cj is determined by a linear combination of pj basis functions ψik, i =
1 · · ·mj , k = 1 · · · pj , dependent on the ion concentrations yj . The ith basis
function, in fact, depends only on the ith ion concentration yij :

ψik(yij) =
{

1, if τ1,k ≤ yij ≤ τ2,k

0, otherwise (1)

The boundary parameters, τ1 and τ2 for each ψ are evolved. The concentrations
cj that determine the output of the neuron are simply cj =

∑mj

i=1

∑nb,j

k=1 ψik(yij).
(Note that cj are integers.) This structure is reminiscent of and was inspired by
the coarse-coding scheme of Albus [1] and we accordingly refer to it as coarse-
coding regulation. The basis functions here square-hat functions in one dimension
although the kind of tiled functions in Albus’s Cerebellar Model Arithmetic
Computer can also be used.

Fig. 2. (a) Schematic of competing messenger-channel protein networks. (b) Coarse-

coding interactions between messenger-protein for mj = 2.

Binary-State Neuron. Let us first consider a binary-state neuron, i.e., one where
the output s(t), where t represents the discrete time-step, is either 0 or 1. This
output is given by

s(t) =
{
aj , if cj is a unique maximum
φs(t− 1), otherwise (2)

The messenger-channel protein networks compete to determine the neuron’s out-
put. If cj = max{c1, c2 . . . cnc

} and is uniquely determined, i.e., no two net-
works produce the same maximum concentration, then the output is taken as
aj ∈ {0, 1} (genetically evolved). Otherwise, the output takes the value φs(t−1),
where φ ∈ {0, 1}. When φ = 1, the output from the previous time-step is main-
tained. Thus s(t) is intended to model the ‘spike’ status of the neuron.

Multistate Neuron. Spiking neurons superimpose their spikes on a background
signal. We model this aspect of the neuron by allowing for a multiple-state
output, s = [s1 s2] where s1 ∈ {0, 1} is associated with the spiking signal and
s2 with the background signal. The output s1 is given again by (2). We offer two
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models for the computation of s2, a feedforward model and a memory model. In
the former, s2 is given by (2) with aj replaced by bj ∈ {0, 1/qb, ..., 1} which is
graduated in qb (an integer greater than one) uniform steps between 0 and 1. In
the memory model, bj ∈ {0,max{0, s2(t− 1)− 1/qb},min{s2(t− 1) + 1/qb, 1}, 1}
allowing for storage, reset, gating and increment/decrement functionality. This
multistate model of the neuron is an attempt to better incorporate biological
observations of neuron action potential through bottom-up modeling of protein
interactions.

Evolution and Development Details of the development process for the tissue
remains identical to previous versions of ANT and can be found in [16, 17]. Unlike
previous versions of ANT that used neurons with a modular activation function
using two thresholds [18], the coarse-coding cell model allows for a developmental
activation function. Cell and protein genes have a binary ‘activation’ parameter,
used either to express or repress gene contents. (The genome structure is shown
in Fig. 3.) Each channel protein references a cell address. Messenger and action
proteins in turn reference a channel protein. Since these genes are modular, it
is possible for a messenger-channel protein network to be incomplete and thus
lacking channel proteins.

Fig. 3. Genome of messenger-protein network components and a typical motor control

neuron.

Mutations in the genome can perturb existing genetic parameters or addi-
tion of new (cell, messenger, channel or action) genes caused by random gene
transcription errors with a probability of pte. Thus a new cell-protein gene as a
result of a transcription error is a copy of an existing cell-protein gene with per-
turbations starting at point chosen from a uniform distribution along the gene’s
length and with the gene activation parameter toggled off by default.

4 Sign-Following Task

The effectiveness of the coarse-coding cell model is demonstrated in simulation
on two memory-dependent versions of the unlabeled sign-following task. The
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workspace is modeled as a two-dimensional grid environment with one holo-
nomic robot (based on a Khepera, equipped with a gripper and camera) occu-
pying four grid squares. For these tasks, the controller must possess a number of
capabilities including that to decipher signs relative to the robot’s current frame
of reference, to remember the current sign while looking for the next one, and
to negotiate obstacles (see Fig. 4a). Each sign is color-coded and represents a
waypoint (posted in a fixed frame of reference) that gives direction in one of four
cardinal points to the next waypoint leading ultimately to the goal location.

Fig. 4. (a) 2D grid world model for the sign-following tasks. (b) Input sensor mapping.

Mines (undetectable by the robot) are randomly laid throughout the floor
except along the pathway. Once a robot encounters a mine, it remains disabled
for the remainder of its lifetime. The sensory input map is shown in Table 1
(see also Fig. 4b). The task has to be accomplished using a discrete set of basis
behaviors specified in Table 2. These behaviors are activated based on controller
output and all occur within a single time-step. The robot is initially positioned
next to the first sign, but the initial heading is randomly set to one of the four
cardinal directions. Since the robot can only detect signs placed in front, it needs
to go into a ‘sign searching’ mode and perform a sequence of ‘turn left’ or ‘turn
right’ behaviors to detect the first sign. Once the first sign is detected, the robot
then needs to transition to a ‘sign following’ mode, requiring one bit of memory.

Table 1. Sensor Inputs

Sensor Variables Function Description

V1 . . . V4 Object detection Robot, block, no obstacle
G1 Gripper status Holding block, no block
S1 Sign detection Red, blue, orange, pink, green
D1 Heading North, east, west, south

Deciphering signs relative to the robot’s current frame of reference makes
these tasks particularly difficult given a fitness function that measures success in
terms of reaching the goal location. The two versions of the task considered here
are (1) where the controller has access to a compass sensor at each time-step and
(2) where compass sensor readings are penalized or restricted. We shall refer to
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the former variant as compass-enabled and the latter as compass-restricted. Even
the simpler compass-enabled version is found to be unsolvable for predetermined
fixed-network topologies that lack regulation (see Results and Discussion).

Table 2. Basis Behaviors
Order Behavior Description

1 Pick-Up/Put-Down Pick up or put down obstacle
2 Move forward Move one square forward
3 Turn right Turn 90◦ right
4 Turn left Turn 90◦ left

5, 7, 9, 11 Bit set1 Set memory bit i to 1, i = 1 · · · 4
6, 8, 10, 12 Bit clear1 Set memory bit i to 0, i = 1 · · · 4

13 Get hint2 Get current heading (D1)
1Behaviors disabled for recurrent and memory neuron architectures
2Behaviors disabled under certain conditions (see text)

In the compass-restricted version, the controller must perform sign follow-
ing knowing just its initial heading thus requiring the controller to predict and
keep track of the robot heading (ego-orientation) in addition to accomplishing
the other subtasks described earlier. Keeping track of long term dependencies
is acknowledged to be difficult with recurrent connections [7] making the sign-
following task a good benchmark for multistate architectures. The robot in this
case has access to one additional behavior, the ‘get hint’ behavior, which inter-
rogates the compass for the ‘true’ heading. However, the fitness function incre-
mentally penalizes and restricts the number of hints used. The fitness function
for a given run is defined as

fi =

{ 1
1 + βnhint/16 , if goal is reached

0, otherwise
(3)

The total fitness function is averaged over all runs. For the compass-enabled
variant, β = 0 although the robot always knows the compass direction. So when
the goal is achieved fi = 1; otherwise, fi = 0. For the compass-restricted one the
reward for success is discounted according to the number nhint of hints that have
been used. However, for the first 5,000 generations, the robot is not penalized for
using hints; hence β = 0. For the subsequent 10,000 generations, β = 1 but the
hint can only be used in the first four time-steps. (This allows the robot to get
the true direction reading as it starts out.) After 15,000 generations, hints are
proscribed altogether. These parameters were found through experimentation to
work well for this task.

The evolutionary performance of various control system architectures is com-
pared for the two variants of the sign-following task (see Fig. 6). The robot’s
world is a 20×20 grid with 80 uniformly distributed obstacles and 40 randomly
distributed mines (except along the path to the goal). The fitness is averaged
over 100 runs with different initial conditions, the elapsed time for each run
being limited to 100 timesteps. Controllers that lack recurrent connections or
memory neurons have access to four memory bits, which can be manipulated
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using the defined basis behaviors. Evolution assumes a population of 100 indi-
viduals in each generation and a tournament size of 24. The crossover probability
pc = 0.7, the mutation probability pm = 0.005 and the transcription error rate
pte = 0.005.

5 Results and Discussion

Fig. 6a shows the average (population best) fitness of the controllers evaluated
in each generation for the compass-enabled variant of the sign-following task.
For some comparison, a fixed-topology recurrent network with 9 hidden and 4
output neurons is also shown. (Although this is typical of the results obtained for
such a network, we did not optimize performance in any way.) Fixed-topology
networks tend to have more ‘active’ synaptic connections present (all neurons
are active) and thus more spurious neurons need to be dealt with simultaneously.
The ANT topology with the coarse-coding neuroregulatory mechanism disabled
(using modular activation function) shows better performance than fixed topolo-
gies (including H-ESP [7]) but not sufficient to complete the task for all the initial
conditions tested.

Fig. 6. Comparison of performance for (a) compass-enabled task and (b) compass-

restricted task.

Fig. 7. Comparison of (a) coarse-coding cell models and (b) ANT topologies.

In contrast, heterogeneous architectures, whether predefined (modular activation
function) or developmental, outperform other architectures. In the coarse-coding cell
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model, selection is favoring increased complexity among decision neurons (Fig. 7a) but
this is followed by a gradual simplification in neuron structure. This simplification is
possible with all the channel proteins disabled, resulting in constant output (indepen-
dent of sensory input).

While the modular activation function also allows for heterogeneity, it is a fixed-
cell architecture that does not facilitate intracellular competition nor ‘complexification.’
Overall, the ‘expressed’ structure of the coarse-coding cell model is using fewer tuning
parameters (both weights and thresholds) than with the modular activation function
as it converges to a solution (Fig. 7b).

Fig. 7b also shows that many messenger-channels protein networks have redun-
dant action proteins implying a ‘weak’ cooperative setup. A weak cooperative setup
is advantageous, allowing for cooperative and competitive tendencies and can better
facilitate a transition between the two. The added benefit of the heterogeneous coarse-
coding cell model is that it also facilities memory functionality through gating. The
evolutionary performance with gated-memory functionality (φ = 1) shows a definite
improvement over recurrent architectures for both tasks (Fig. 6a).

Fig. 8.(a) Typical ANT solution (fitness f = 0.99) using multistate neurons (memory
model) for the compass-restricted sign-following task. (b) Output behavior and function
of memory neurons.

For the compass-restricted version of the task (Fig. 6b), only the multistate coarse-
coding cell models can reach a fitness of 0.9 within 25,000 generations at least once.
The binary-state neuron model with feedforward connections (and access to 4 memory
bits) showed comparable results with a fitness of 0.8 at least once while the binary
recurrent architecture performs poorly. Among the four architectures, the binary re-
current model (localized memory) lacks built-in competitive network mechanisms for
memory representation. For the multistate model, these competitive mechanisms are
the protein networks resident in each cell, while similar functionality is present within
the feedforward architecture, where neuron ensembles compete for control of the 4
memory bits (see [17]).

These results also show intracellular competition has an advantage over intercellular
competition for memory representation. The multistate neuron model with memory
functionality outperformed the multistate feedforward model (Fig 6b). It should also
be noted that the model is more favorable in helping to map expected compass sensory
input due to the inclusion of increment/decrement and reset ‘actions’ (see Fig. 8).
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6 Conclusions

A developmental coarse-coding neuron model that facilitates heterogeneity and cell
extensibility is found to exploit gated memory functionality. This architecture is found
to be more effective than recurrent architectures for two memory -dependent vari-
ants of the unlabeled sign-following robotic task. The neuron model produces smaller
networks on average than a predefined heterogeneous cell model and is driven by com-
petitive/cooperative dynamic leading to specialization.
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