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Abstract. Automation of site preparation and resource utilization on the Moon with teams of autonomous robots 
holds considerable promise for establishing a lunar base.  Such multirobot autonomous systems would require limited 
human support infrastructure, complement necessary manned operations and reduce overall mission risk. We present 
an Artificial Neural Tissue (ANT) architecture as a control system for autonomous multirobot excavation tasks.  An 
ANT approach requires much less human supervision and pre-programmed human expertise than previous techniques.  
Only a single global fitness function and a set of allowable basis behaviors need be specified.  An evolutionary 
(Darwinian) selection process is used to ‘breed’ controllers for the task at hand in simulation and the fittest controllers 
are transferred onto hardware for further validation and testing.  ANT facilitates ‘machine creativity’, with the 
emergence of novel functionality through a process of self-organized task decomposition of mission goals.  ANT based 
controllers are shown to exhibit self-organization, employ stigmergy (communication mediated through the 
environment) and make use of templates (unlabeled environmental cues).  With lunar in-situ resource utilization 
(ISRU) efforts in mind, ANT controllers have been tested on a multirobot excavation task in which teams of robots 
with no explicit supervision can successfully avoid obstacles, interpret excavation blueprints, perform layered digging, 
avoid burying or trapping other robots and clear/maintain digging routes. 
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INTRODUCTION  

The use of multipurpose teams of robots for construction of key elements of a human habitat on the moon offers 
many benefits.  It is very likely an imperative due to concerns of health and safety limiting the productivity of 
human astronauts.  These teams of autonomous robots could work continuously in harsh environments making them 
very productive and appealing for extended duration tasks without the need for teleoperation infrastructure.  One has 
only to observe the effectiveness of a colony of ants excavating tunnels or termites building towering cathedral 
mounds with internal heating and cooling shafts (Bristow and Holt, 1997) to see why approaches to such tasks in 
robotics are often biologically inspired and multiagent oriented (Melhuish, Welsby and Edwards, 1999). 

An earth-based teleoperation infrastructure would require robust operational procedures with the ability to handle 
intermittent communication interruptions, bandwidth disruptions/traffic limitations and latency issues.   Such a 
system  has been demonstrated successfully with the Lunakhod 1 and 2 rover missions; however, operator fatigue is 
of concern (Miller and Machulis, 2005) especially when coordinating actions with teams of robots over extended 
duration missions.   

Alternatively, a lunar-based teleoperation system will still require a dedicated human habitat infrastructure for on-
site operation.  Operation of multiple robots will either require multiple operators or single operator using an 
automated scheduling system (Mau and Dolan, 2007).  A scheduling system would be less efficient than continuous 
operation since its limited by saturation (when a human operator cannot attend to any more robot tasks) in contrast 
to an autonomous robotic system that is not limited by these concerns.  These attributes make an autonomous robotic 
system more appealing, with the possibility of having a base deployed and operational in time for astronauts to 



arrive from Earth.   There currently exist two major approaches to developing autonomous control systems: human 
knowledge/model-based controllers and systems based on machine learning techniques. Human knowledge/model-
based behavior control strategies rely on human input in the form of ad-hoc control rules, task-specific assumptions, 
and human experience and knowledge.  In contrast, machine learning systems presented here perform task 
decomposition through ‘emergent’ self-organization behavior.  In lunar and planetary environments, task-specific 
assumptions may not always be valid in situ and may require operational reassessment during a mission.  There is 
also a growing necessity for the development of generic teams of multipurpose ‘utility’ robots that can facilitate in-
situ resource utilization and perform specific tasks that may never have been envisioned during mission planning 
and modeling stages. 

The approach outlined in this paper involves the application of a machine learning approach called the Artificial 
Neural Tissue (ANT) framework (Thangavelautham and D’Eleuterio, 2005) to solve a multirobot excavation task, 
where teams of robots need to excavate a hole in which to bury a nuclear power source.  With minimal task-specific 
assumptions and limited supervision, ANT can produce controllers which can interpret and follow excavation 
blueprints, can successfully avoid obstacles, perform layered digging, avoid burying or trapping other robots and 
clear/maintain excavation routes.  These innovative behaviors are achieved through the exploitation of unlabeled 
blueprint cues and templates, stigmergy (indirect communication mediated through the environment), and self-
organization. Since little preprogrammed knowledge is given, ANT may discover novel solutions.  In this paper, we 
compare performance characteristics of an ANT-based neural network controllers for a multirobot excavation task. 

BACKGROUND  

Previous work into autonomous excavation (Stentz et al., 1998) has been limited to single robotic excavation 
platforms and separate loading/unloading vehicles for terrestrial applications.   Digging operations is performed 
through use of human defined automated scripts (behaviors) that simplify repetitive excavation/truck loading cycles.  
These are a more elaborate form of ‘if-then’ rules, defined specifically for the task at hand.  The scripts are used to 
position and unload an excavator bucket relative to a dump truck, based on a suite of sensors onboard the vehicles.  
The scripts are developed based on input from expert human excavator operators and model vehicle specific 
limitations such as load handling capacity.   These scripts also incorporate a coarse and refined planner to sequence 
digging operations within a localized area.   Such systems have been comparable in efficiency to human operated 
systems.   Kinematic modelling-based techniques have been used to automate the digging operations of an electric 
rope shovel (Dunbabin and Corke, 2006).   Sensing of the digging terrain is done using laser ranger sensors.  Both 
systems are explicitly designed for specific vehicle platforms and lack any longer term task planning capability.  A 
control system such as LUCIE (Bradley and Seward, 1998), apart from identifying and automating cyclic excavation 
related subtasks, incorporates a whole sequence of intermediate goals that need to be achieved to complete a trench 
digging task.  The task is decomposed and prioritized by a human operator and the controller attends to automatic 
sequencing of subtasks to achieve each intermediate goal. 

Autonomous collective robotic tasks typically employ some of the same mechanisms used by social insects.  These 
include the use of templates, stigmergy, and self-organization. Templates are environmental features perceptible to 
the individuals within the collective (Bonabeau, Dorigo and Thereaulaz, 1999).   In robotic applications, template-
based approaches include the use of light fields to direct the creation of circular (Stewart and Russell, 2003) and 
linear walls (Wawerla, Sukhame and Mataric, 2002) and planar annulus structures (Wilson et al., 2004).  Stigmergy 
is a form of indirect communication mediated through the environment (Grasse, 1959). Stigmergy has been used 
extensively in collective-robotic construction tasks, including blind bull dozing (Parker, Zhang and Kube, 2003), 
box pushing (Mataric et al., 1995),  heap formation (Beckers, Holland and Deneubourg, 1994) and tiling pattern 
formation (Thangavelautham, Barfoot and D'Eleuterio,  2003).  Self-organization describes how local or microscopic 
behaviors give rise to a macroscopic structure in systems which are not in equilibrium (Bonabeau et al., 1997).   
With decentralized self-organized systems, no individual possesses knowledge of the overall environment or the end 
goal.  Individuals merely react to local sensor data.  Our approach in this paper uses a Darwinian selection process to 
evolve robotic controllers for performing a desired task. The evolved controllers make use of templates and 
stigmergy in order to achieve the level of self-organization necessary to achieve the global goals.   

The collective robotic and autonomous excavation works cited earlier excluding (Thangavelautham, Barfoot and 
D'Eleuterio, 2003) rely on either user-defined, deterministic ‘if-then’ rules, or on stochastic behaviors. In both cases, 
designing these controllers is an ad-hoc procedure that relies on the experimenter’s or operator’s knowledge of the 



task at hand.  However, for collective robotic tasks, the global effect of local interactions is often difficult to gauge, 
and the specific interactions required to achieve a global consensus may even be counterintuitive. Thus, at this stage 
of the field’s development at least, designing successful controllers by hand is a process of trial and error.  With 
autonomous excavation, only one vehicle is considered and thus the impact of digging behaviors when introducing 
multiple interacting vehicles is also bound to the same problems encountered for collective robotic tasks. 

One approach to reducing the amount of trial and error done by hand is to encode controllers as behavioral look-up 
tables, and allow a genetic algorithm to evolve the values in the table.  This approach was demonstrated for 
collective heap formation (Barfoot and D’Eleuterio, 1999) and 2 × 2 tiling pattern formation tasks 
(Thangavelautham, Barfoot and D'Eleuterio, 2003).  The limitations to this approach are poor sensor scalability and 
lack of generalization. An increased number of sensors leads to a combinatorial explosion in the size of the look-up 
table, resulting in premature search stagnation (the ‘bootstrap’ problem).    For excavation, poor sensor scalability 
imposes severe constraints on the choice of digging vehicle and number of sensors allowed.  As an action must be 
encoded for each combination of sensor inputs, the controller does not generalize from one state to another one with 
similar inputs.  Neural-network controllers can often overcome this second limitation by effectively implementing a 
compressed representation of the problem space.  A neural-network controller was able to solve the harder 3 × 3 
tiling formation task (Thangavelautham and D’Eleuterio, 2004).  Other fixed-topology neural controller approaches 
have been used to build walls, corridors and briar patches (Crabbe and Dyer, 1999). 

Fixed-topology neural networks present an additional problem: The size and structure of the network must be fixed 
ahead of time. Inappropriate choices may lead to a network that is unable to solve the problem.  The ANT 
framework is able to overcome this problem.  This variable-length neurocontroller model allows for the 
generalization of sensory input, for improved scalability over fixed-network topologies, and for both stochastic and 
deterministic arbitration schemes.  More importantly for excavation, ANT allows for both sensor and behavior 
extensibility and is not constrained to a specific digging platform. 

ARTIFICIAL NEURAL TISSUE MODEL  

 
(a) Synaptic Connections. (b) Coarse Coding. 

FIGURE 1. (a) Synaptic Connections between Motor Neurons from Layer l+1 to l. (b) Activated Decision Neurons Diffuse  
Neurotransmitter Concentration Field Resulting in Activation of Motor Control Neurons with Highest Activation Concentration. 

The ANT architecture (Figure 1) used in this paper consists of a developmental program, encoded in the ‘genome,’ 
that constructs a three-dimensional neural tissue and associated regulatory functionality.   The tissue consists of two 
types of neural units, decision neurons and motor-control neurons, or simply motor neurons.  Regulation is 
performed by the decision neurons that dynamically exhibit or inhibit motor-control neurons within the tissue based 
on a coarse-coding framework.  Further details on ANT can be found in Thangavelautham et al. (2007). 

SIMULATION EXPERIMENT SETUP  

The excavation task is intended to demonstrate the feasibility of team of robots in digging a hole to bury a nuclear 
reactor into lunar regolith.  This is intended as the first step in setting up nuclear power source for a lunar base.  It 
could be argued that emergent task decomposition may be necessary to accomplish the task given a global fitness 
function.  A layout of the simulation experiment area used for training is shown in Figure 2.  The experiment region 



or workspace is modeled as a two-dimensional grid environment with the size of four squares in the grid being just 
able to accommodate one robot.  For this task, the controller need to accomplish a number of subtasks including 
interpret excavation blue prints, perform layered digging, avoid burying or trapping other robots and clear/maintain 
excavation routes.  Each robot controller has access to a goal map that defines the location of the dumping area and 
target depth of the excavation area.  The global fitness function f  for the task is given as follows:  
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I and J are the dimensions of the workspace, where  
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excavated and 0 otherwise;  gi,j is the target depth and hi,j  is the current regolith depth.  For the evolutionary runs, 
fitness f is calculated after T=100 timesteps, for an excavation area of 8 × 8 squares surrounded by the dumping area. 

TABLE 1. Sensor Inputs. 
Variables Function       States 

Z1...Z3 Depth Sensing relative to Goal Depth       Level, Above, Below, Don’t Care 
FZ1, FZ2 Depth Sensing relative to Ground       Above, Below or Level 
B1 Blade Position       Above, Level, Below ground, Home 
BL1 Blade Load       0-4 
S1 Front Obstacle Detection       Obstacle, No Obstacle 
D1 Separation Distance From Nearest Robot    0-3 
H1 Heading from nearest robot       North, East, West, South 
TL1 Robot Tilted Downwards       True, False 
ST1 Robot Stuck       True, False 

 

 

 

(a) Localization (b) Goal Map 

FIGURE 2. Localization setup for hardware demonstrations and an example goal map. 
 
 

 
(a) Virtual Radar (b) Sonar (c) Depth Sensing (d) Blade, Motion Sensing 

FIGURE 3. Robot Input Sensor Mapping for the Simulation Model. 



 
 
TABLE 2. Basis Behaviors. 
Order Behavior              Description 
1 Set Throttle             Set rover throttle to high otherwise remain nominal/ 
2 Move Forwards             Move one grid square forwards. 
3 Move Backwards             Move one grid square backward. 
4 Random Turn             Randomly Turn 90 o right or Turn 90 o left. 
5 Turn Right             Turn 90 o right. 
6 Turn Left             Turn 90 o left. 
7                      Blade position: Above        Set blade above ground d cm 
8                      Blade position: Below        Set blade below ground d cm 
9 Blade position: Level         Set blade level to ground 
10                    Blade position: Home         Retract blade to home position (makes no contact with regolith) 
11 Bit Set             Set memory bit 1 to 1 
12 Bit Clear             Set memory bit 1 to 0 

 

For this task, inputs to the ANT controller are shown in Table 1 (right).  The robots have access to a pair of 
webcams and a laser range finder mounted on a pan tilt unit.  The webcams are used to detect and center  the pan tilt 
units on up to four localization targets consisting of ellipses with contrasting patterns (Figure 2a).  A laser range 
finder is used to measure the distance from each target to robot and triangulation is performed to determine (x, y, z) 
coordinates of the robot within the target workspace.  The discretized x and y coordinates are use to lookup the goal 
depth gx,y of each grid square region in front of the robot (Figure 2b).  The ground topology is discretized into d cm 
increments, where d is dependent on blade height and actuation parameters.  For use on the Argo class rovers d is set 
to 1 cm.   In addition, a laser scan of the ground in front of the robot is performed to measure depth of regolith in 
relation to the wheel depth to determine Z1..Z3 and FZ1..FZ2 (Figure 3c).  The current x and y positions of each robot 
is used to determine the relative position of the nearest robot and its relative heading through map sharing.  All raw 
input data are discretized.  The sonar sensors are used to determine the values of S1.  A pair of load cells on the blade 
is used to determine BL1 and onboard tilt sensor is used to determine TL1.  Frame differencing of two consecutive 
webcam images of the ground is used to determine ST1 (whether the rover is stuck or not).  The robots also have 
access to one memory bit, which can be manipulated using some of the basis behaviors.   

Table 2 lists the basis behaviors the robot can perform (in order) within a single timestep.  Darwinian selection is 
performed based on the fitness value of each controller averaged over 50 different initial conditions, within an 8 × 8 
excavation area (Figure 2b).   The Evolutionary Algorithm  population size for the experiments is P = 100, crossover 
probability pc = 0.7, mutation probability pm = 0.025 and tournament size of 0.06 P. 

RESULTS AND DISCUSSION  

Figure 4 shows the fitness (population best) of the overall system evaluated at each generation of the artificial 
evolutionary process.  It is apparent that the system performance is affeced by the density of robots per digging area 
(8 × 8 squares).   A single robot is not as efficient as 4 robots, as the excavation can be performed in parallel, with 
each robot having a smaller area to cover.  However, with more than 4 robots, the problem of antagonism arises, 
when multiple robots trying to perform the same task interfere with one another and reduce the overall efficiency of 
the group (see Figures 6, 7).  The emergent solutions indicate that the individual robot exploits templates by learning 
to sense depth relative to the specified goal map and determine whether to lower, level or raise the blade (Figure 12).  
Once the robot senses a dumping area in front, the controller executes are combination of ‘move backward’ 
followed by a ‘turn left’ or ‘turn right’ to offload the excavated material.  As with other multiagent systems, 
communication between robots occurs through manipulation of the environment in the form of stigmergy.  The 
manipulation of the environment involves either excavating a region or dumping off excavated material. 

Controllers also exploit the ability to sense the depth of soil relative to wheel depth (see Figure 3c).  This enables 
each robot controller to sense whether it is excavating deeper or backfilling at the current depth.  The ability to 
backfill, although useful in some situations, can also undo the effort of other robots excavating at different depths 
within the system.  The robots also have the ability to sense the relative position of a nearby robot much like a 
virtual form of radar (Figure 3a).  This sensing capability appears to be exploited particularly to avoid collisions 



when a series of output behaviors such ‘move forward’ and ‘turn left’ is applied in sequence.  Although obstacles 
can be detected using sonars directly in front of the robot, there exists blind spots to the extreme right and left 
making it difficult to detect and react to obstacles when a sequences of behaviors are executed.   

 

FIGURE 4. Evolutionary Performance Comparison of ANT Based Solutions for between 1 and 5 Robots. 

 

FIGURE 5. Scaling of ANT based Solutions from 1 to 5 robots (8 × 8 excavation area, average 1.5d cm depth). 

 
 

 

(a) Frame 1. (b) Frame 2. (c) Frame 3. (d) Frame 4. 

FIGURE 6. Movie frames of Argo Rover with ANT Controller Performing an Excavation Task Conducted at the Planetary and 
Mining Sciences Symposium, Sudbury, Canada (June, 2007). 

We examine the fittest solutions from the simulation runs shown in Figure 4 for scalability in the number of robots 
while holding the size of the digging area constant (Figure 5). Taking the controller evolved for a single robot and 
running it on a multirobot system shows a steep degradation in performance.  This is expected since the single-robot 



controller lacks the cooperative behavior necessary to function well within a multirobot setting, showing similarity 
to the resource gathering task (Thangavelautham et al., 2007).  For example, such controllers fail to develop ‘robot 
collision avoidance’ behaviors.  Similarly, a multirobot system scaled down to a single robot setting also shows a 
degradation in system performance.  With the multirobot systems, controllers have evolved to exploit and depend on 
cooperative actions to complete the task; thus when the environment is abruptly changed to exclude such a 
possibility the controller performs poorly.    
 

 
 

(a) Timestep 0. (b) Timestep 50. (c) Timestep 75. (d) Timestep 100. (e) Timestep 170.  
      

FIGURE 7. (a)-(e) Snapshots of an a Excavation Task Simulation (4 robots). 

 
 

(a) Varying Excavation Depth (b) Varying Excavation Area 
  

FIGURE 8. Scaling of ANT based solutions for varying depth (a) and 4 robot solution for varying excavation area (b). 

It is interesting that the controllers trained with 4 robots for an 8×8 digging area perform considerably better overall 
than solutions trained for other densities.  It is also apparent that this solution scales better for increased goal depth 
(see Figure 8a) and was found to scale better than other solutions for increased excavation area.  The optimal ratio 
(best fit) of robots to digging area using solution trained with 4 robots is shown in Figure 8b.   However, when the 
number of robots is set higher than the optimal number, solutions trained under higher robot densities perform 
better, although the system performance falls short compared to the optimal setting (Figure 5).  It is apparent from 
these simulation experiments that there exists an optimal set of training conditions under which solutions show 
improved scalability.  Although the controllers maybe better adapted to antagonism under higher training densities 
with improved obstacle avoidance techniques, these behaviors may not be as well tuned to completing the overall 
objectives (excavation) effectively. 

CONCLUSIONS 

A developmental Artificial Neural Tissue (ANT) architecture has been demonstrated for a multirobot excavation 
task in support of lunar in-situ resource utilization efforts.  ANT controllers require only a global fitness function 
that merely measures the performance of the controller for a given task and a generic set of basis behaviors.   ANT 
controllers are shown to exploit a number of mechanisms known to be used in multiagent systems in unsupervised 
manner, including environmental templates, stigmergy and self-organization.  ANT is shown to generalize and 
interpret user defined excavation blueprints.  Since little preprogrammed knowledge is given, an ANT architecture 



may permit novel solutions that might otherwise be overlooked by a human supervisor.  The scalability of the ANT 
controllers under varying training conditions indicate existence of optimal set of training parameters.  The 
controllers are shown to be scaleable for both increased excavation depth and area. 
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